Performance Study of Cancer Selection/Classification Algorithms Based on Microarray Data
Keywords:
DNA (deoxyribonucleic acid), Microarray, Support Vector Machine, GeneAbstract
Microarray data has an important role in detecting and classifying all types of cancer tissues. In cancer researches, relatively low number of samples in microarray has always caused some problems in designing classifiers. So, microarray data is preprocessed through gene selection techniques and the genes which contain no information is discarded. Basically, a proper gene selection method can effectively improve the efficiency of diseases (cancers) classification. The purpose of this article is to compare different extraction algorithms of informative genes and also their different classification algorithms. First, ReliefF algorithms, information gain and normalized mutual information are introduced as algorithms used in order to extract feature and their features are noted. Then three classification algorithms, two proposed Bayesian Linear Discriminate Analysis (BLDA), Modified Support Vector Machine (υ-support Vector Machine) algorithms and Probabilistic Neural Network are compared in terms of classification accuracy. Implementation results show that combinational algorithm of normalized mutual information and BLDA classifier has best performance among other raised methods. So that, with applying this algorithm, classification accuracy in blood cancer data base is 95.34 percent.Downloads
Additional Files
Published
26.12.2014
How to Cite
1.
SABERKARI H, SHAMSI M, GOLABI F, AMOSHAHY MJ, SEDAAGHI MH. Performance Study of Cancer Selection/Classification Algorithms Based on Microarray Data. Appl Med Inform [Internet]. 2014 Dec. 26 [cited 2024 Oct. 30];35(4):1-10. Available from: https://ami.info.umfcluj.ro/index.php/AMI/article/view/502
Issue
Section
Articles
License
All papers published in Applied Medical Informatics are licensed under a Creative Commons Attribution (CC BY 4.0) International License.