VIKOR Method for Diabetic Nephropathy Risk Factors Analysis

Cosmina-Ioana BONDOR*, Ina Maria KACSO, Alina LENGHEL, Dan ISTRATE, and Adriana MUREŞAN

“Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 8th Victor Babeş, 400012 Cluj-Napoca, Romania.
E-mails: cbondor@umfcluj.ro (*); amuresan@umfcluj.ro

* Author to whom correspondence should be addressed; Tel.: +4-0264-431697; Fax: +4-0264-593847

Received: 17 December 2012 / Accepted: 10 February 2013 / Published online: 25 February 2013

Abstract
Diabetic kidney disease is an important complication of type 2 diabetes mellitus (T2DM) and has an economic impact in growth due to the increasing prevalence of T2DM. Identification of diabetic kidney disease risk factors is a priority for both the patient and the healthcare system. The aim of our study was to rank the risk factors using VIKOR method applied on a database with patients with T2DM. Data from 53 T2DM patients were analyzed with VIKOR method. 18 possible risk factors were taken in consideration as alternatives and four separate criteria of renal function: two for albumin excretion – quantified as urinary albumin/creatinine ratio (UACR) and two for GFR (glomerular filtration rate). In the top of the VIKOR method hierarchy was serum adiponectin followed by triglycerides, systolic blood pressure, duration of diabetes and age. Malondialdehyde and HDL-cholesterol influenced chronic kidney disease as protective factors (18th, respective 17th position in the hierarchy). VIKOR method brought new information about the similarity between the positions of some factors in the hierarchy.

Keywords: Attribute relevance analysis; VIKOR method; Type 2 diabetes mellitus; Chronic kidney disease; Oxidative stress.

Introduction
The prevalence of diabetes was increasing in recent years due to population growth, aging, increasing prevalence of obesity and sedentary lifestyle reaching 6.4% of adult population [1-2]. In association with increasing diabetes prevalence, will inevitably result increasing proportions of deaths from cardiovascular disease, as well as increased prevalence and associated consequences of other complications of diabetes [3]. One of the common complication of diabetes is chronic kidney disease (CKD) which leading to dialysis or renal transplantation. CKD clinically manifests as a progressively decline of albuminuria and glomerular filtration rate [4]. Slowing disease progression is desirable for diabetes patients because kidney failure worsens quality of life. Analyzing the risk factors for CKD can prevent the onset and progression of this disease. Due to that reason we considered that all information mined from data are important. A hierarchy of risk factors is desirable because we need to know the most important risk factors for CKD. A particular problem discussed in the medical international literature is the role of non-traditional factors of progression of chronic renal failure, like chronic inflammation and oxidative stress [5]. It is believe that oxidative stress, the imbalance of pro- and anti-free radical processes is a risk factor for diabetic
nephropathy [6]. Our study measure the relationship of oxidative stress markers and progression of chronic renal failure compared with other factors.

The progression of CKD was analyzed earlier by the decrease of glomerular filtration rate (GFR) or for the increase of urinary albumin/creatinine ratio (UACR) [7-9]. Dwyer stated their concern that they studied only one diagnostic criterion for CKD (UACR) and there are a large proportion of diabetic patients with completely normal UACR (<30mg/g) and with significant kidney dysfunction (GFR≤90 ml/min) [10].

For attribute relevance purpose were used methods like Shannon entropy [11-12], statistics, fuzzy theory [13], artificial intelligence algorithms [14] or neural networks [15].

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method is an adequate method for ranking the risk factors when there are multiple criteria for the disease [16]. Several studies applied TOPSIS method in medical field to resolve a multiple criteria decision making problem [17-21].

The VlseKriterijumska Optimizacija I Kompromisno Resenje – in Serbian (VIKOR) method is another multicriterial decision making method (MCDM). Opricovic (1998) and Opricovic and Tzeng (2002) developed this method based on the compromise ranking method of MCDM [22-23]. The compromise solution is a feasible solution, which is the closest to the ideal, and a compromise means an agreement established by mutual concessions [24]. VIKOR method was compared earlier with TOPSIS method [24-26]. The TOPSIS method determines a solution with the shortest distance from the ideal solution and the farthest distance from the negative-ideal solution, but it does not consider the relative importance of these distances when rank the solutions [27-28]. VIKOR method was never applied in medical field (search in PubMed returns 3 results: two in environmental management and one in education) [29-31]. A MCDM problem which can be solved with TOPSIS method is suitable also for VIKOR method [32]. We applied TOPSIS method in medical field to rank risk factors and proved to be an adequate method for this purpose [33-35].

The main objective of our study was to applied VIKOR method for risk factors analysis for CKD in patients with T2DM. We had two situations for patients who had chronic nephropathies: decrease glomerular filtration rate (GFR) or/and increase urinary albumin/creatinine ratio (UACR). Our aim was to analyzed risk factors for decrease GFR and for increase UACR with VIKOR method.

Material and Method

Patients and Methods

We included in the study 53 consecutive type 2 diabetic patients seen in the outpatient settings of the Clinic of Nephrology "Mihai Manasia" Cluj. Inclusion criteria were presence of type 2 diabetes mellitus in the patient history (2 years minimum) and presence of an informed written consent. Exclusion criteria were known nondiabetic renal disease, diabetic kidney disease stage 4–5, a history of uncontrolled hypertension and acute clinical manifest inflammatory/infectious diseases. UACR was determined from a random morning urinary spot. History, clinical examination, blood pressure measurement and anthropometric measurements were obtained. Routine laboratory analysis (automated analyzer), micro albuminuria (immunoturbidimetry), creatininuria (Jaffe), C reactive protein (CRP), total plasma adiponectin (CYBER-ELISA total adiponectin), glycated hemoglobin A1c (chromatographic-colorimetric method -Biogamma) were performed in the Laboratory of Immunology of the Emergency County Hospital Cluj, Romania. Malondialdehyde (MDA) (colorimetric method with thiobarbituric acid), catalase were performed in the Laboratory of the Physiology Department of the University of Medicine and Pharmacy “Iuliu Hațieganu” Cluj, Romania. Glomerular filtration rate (GFR) was estimated according to the abbreviated modification of diet in renal disease (MDRD) formula (GFR=186 × Serum creatinine (μmol/L) -1.154 × age (years) - 0.203 × 0.742 (if female) × 1.210 (if African American)) [36]. This data were used in Bondor et al. to rank the same risk factors with TOPSIS method [35].
The VIKOR Method

The VIKOR method was developed to solve a MCDM problem in complex system. It determines the compromise ranking-list, the compromise solution, and the weight stability intervals for preference stability of the compromise solution obtained with the initial (given) weights [24]. VIKOR rank the alternatives according to conflicting criteria. It introduces the multicriteria ranking index based on the particular measure of “closeness” to the “ideal” solution [22].

The multicriteria measure for compromise ranking is developed from the L_p-metric used as an aggregating function in a compromise programming method [37-38].

Let m decision criteria (symptoms, characteristics) $C_j, j = 1, m$ of the same condition (disease, problem, state) and n alternative solutions $V_i, i = 1, n$. We denote matrix of consequences $A = \left[a_{ij}\right], i = 1, n, j = 1, m$.

Development of the VIKOR method started with the following form of L_p-metric:

$\left| \sum_{j=1}^{m} w_j \left(a_{ij}^+ - a_{ik}^+ \right) \right|^p \leq \left| \sum_{j=1}^{m} w_j \left(a_{ij}^- - a_{ik}^- \right) \right|^p, 1 \leq p \leq \infty; i = 1, n; a_{ij}^+, j = 1, m$ - positive ideal solution,

$a_{ij}^-, j = 1, m$ - negative ideal solution [24].

The VIKOR method has the following steps [22-23]:

Step 1. Determine the best $a_{ij}^+, j = 1, m$ and the worst $a_{ij}^-, j = 1, m$ values of all criterion. If the jth function represents a benefit then:

$a_{ij}^+ = \max a_{ij}, j = 1, m$ and $a_{ij}^- = \min a_{ij}, j = 1, m$.

Step 2. Compute the values S_i and $R_i, i = 1, n$, by the relations:

$S_i = \sum_{j=1}^{m} w_j \frac{a_{ij}^+-a_{ik}^+}{a_{ij}^-a_{ik}^-},$

$R_i = \max w_j \frac{a_{ij}^+-a_{ik}^+}{a_{ij}^-a_{ik}^-},$

where w_i are the weights of criteria, expressing their relative importance.

Step 3. Compute the values $Q_i, i = 1, n$, by the relation:

$Q_i = \frac{S_i - S_i}{S_i - S^-} + \left(1 - t\right) \frac{R_i - R_i}{R^- - R^-},$

where

$S^- = \min S_i, i = 1, n, S^- = \max S_i, i = 1, n, R^- = \min R_i, i = 1, n, R^- = \max R_i, i = 1, n,$

and t is introduced as weight of the strategy of “the majority of criteria” (or “the maximum group utility”), here $t=0.5$.

Step 4. Rank the alternatives, sorting by the values S, R and Q, in decreasing order. The results are three ranking lists.

Step 5. Propose as a compromise solution the alternative V' which is ranked the best by the measure Q (minimum) if the following two conditions are satisfied:

C1. “Acceptable advantage”: $Q(V^*) - Q(V') \geq \Delta Q$, where V^* is the alternative with second position in the ranking list by Q; $\Delta Q = \frac{1}{n-1}$, n is the number of alternatives.
C2. “Acceptable stability in decision making”: Alternative v' must also be the best ranked by S or/and R. This compromise solution is within a decision making process, which could be: “voting by majority rule” (when $t > 0.5$ is needed), or “by consensus” $t \approx 0.5$, or “with veto” ($t < 0.5$). Here, t is the weight of the decision making strategy “the majority of criteria” (or “the maximum group utility”).

If one of the conditions is not satisfied, then a set of compromise solutions is proposed, which consists of:

- Alternatives v' and v^* if only condition C2 is not satisfied, or
- Alternatives $v', v^*, \ldots, v^{(M)}$ if condition C1 is not satisfied; and $v^{(M)}$ is determined by the relation $Q(v^{(M)}) - Q(v') < \Delta Q$ for maximum M (the positions of these alternatives are “in closeness”). The best alternative, ranked by Q, is the one with the minimum value of Q. The main ranking result is the compromise ranking list of alternatives, and the compromise solution with the “advantage rate”.

The decision criteria $C_j, j = \overline{1, m}$ were given in Table 1.

We take in consideration 18 possible risk factors as alternatives. Because VIKOR method requiring qualitative dichotomial data, we transformed the quantitative variables in qualitative variables using a cut-off (Table 2) [35].

The alternatives $V_i, i = \overline{1, n}$ were gender, age (years)* (≥ 70 years), duration of diabetes (years)* (≥ 10 years), metabolic syndrome (ATP3 2005 criteria) (present/absent), body mass index - BMI (kg/m²) (≥ 25 kg/m²), waist circumference (cm) (≥ 87.5 cm), systolic blood pressure - SBP (mmHg) (≥ 140 mmHg), diastolic blood pressure - DBP (mmHg) (≥ 90 mmHg), total cholesterol (mg/dl) (≥ 200 mg/dl), HDL cholesterol (mg/dl) (≥ 60 mg/dl), triglycerides (mg/dl) (≥ 150 mg/dl), ILDL cholesterol (mg/dl) (≥ 110 mg/dl), fasting glucose (mg/dl) (≥ 120 mg/dl), glycated hemoglobin - HbA1c (%) (≥ 7 %), C reactive protein - CRP (mg/dl) (≥ 1 mg/dl), serum adiponectin (μg/ml)* (≥ 5 μg/ml), malondialdehyde - MDA (nmol/ml)* (≥ 4.5 nmol/ml), catalase (U/mg protein)* (≥ 3.5 U/mg protein); (* cut-off with ROC (receiver operating characteristic) curve analysis). The frequencies of their occurrence were given in Table 2 [35].

Table 1. The decision criteria $C_j, j = \overline{1, m}$ [35]

<table>
<thead>
<tr>
<th>C_i</th>
<th>Criteria</th>
<th>Description</th>
<th>Type of criteria</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UACR≥30 mg/g</td>
<td>22 (41.51%) patients with UACR≥30 mg/g</td>
<td>benefit</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>UACR<30 mg/g</td>
<td>31 (58.49%) patients with UACR<30 mg/g</td>
<td>loss</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>GFR/MDRD ≤90 ml/min</td>
<td>26 (49.05%) patients with GFR≤90 ml/min</td>
<td>benefit</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>GFR/MDRD >90 ml/min</td>
<td>27 (50.95%) patients with GFR>90 ml/min</td>
<td>loss</td>
<td>1</td>
</tr>
</tbody>
</table>

UACR = urinary albumin/creatinine ratio; GFR = glomerular filtration rate; MDRD = multicriteria decision making method

The matrix of consequences $A = \left[a_{ij} \right]_{i = \overline{1, n}, j = \overline{1, m}}$ is presented in Table 2, where a_{ij} were the frequencies of occurrence (%).

Results

Application of the VIKOR Method

Step 1. The best $a^*_j, j = \overline{1, 4}$ and the worst $a^-_j, j = \overline{1, 4}$ values of all criteria were presented in Table 3.

Step 2. The values S_i and $R_i, i = \overline{1, 18}$ were given in Table 4.
Table 2. The matrix of consequences $A = [a_{ij}]$, $i = 1, n$, $j = 1, m$ [35]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>UACR\geq30 mg/g</th>
<th>UACR<30 mg/g</th>
<th>GFR \leq90 ml/min</th>
<th>GFR $>$90 ml/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (% male)</td>
<td>40.9</td>
<td>33.3</td>
<td>61.5</td>
<td>65.4</td>
</tr>
<tr>
<td>Age (%\geq70 years)</td>
<td>59.1</td>
<td>63.3</td>
<td>65.4</td>
<td>57.7</td>
</tr>
<tr>
<td>Duration of diabetes (%\geq10 years)</td>
<td>40.9</td>
<td>43.3</td>
<td>46.2</td>
<td>38.5</td>
</tr>
<tr>
<td>Metabolic syndrome (% present)</td>
<td>72.7</td>
<td>73.3</td>
<td>80.8</td>
<td>65.4</td>
</tr>
<tr>
<td>BMI (%\geq25 kg/m2)</td>
<td>86.4</td>
<td>90</td>
<td>88.5</td>
<td>88.5</td>
</tr>
<tr>
<td>Waist circumference (%\geq87.5cm)</td>
<td>100</td>
<td>93.3</td>
<td>100</td>
<td>92.3</td>
</tr>
<tr>
<td>SBP (%\geq140 mmHg)</td>
<td>54.5</td>
<td>33.3</td>
<td>42.3</td>
<td>42.3</td>
</tr>
<tr>
<td>DBP (%\geq90 mmHg)</td>
<td>54.5</td>
<td>70</td>
<td>61.5</td>
<td>65.4</td>
</tr>
<tr>
<td>Total cholesterol (%\geq200 mg/dl)</td>
<td>36.4</td>
<td>33.3</td>
<td>23.1</td>
<td>46.2</td>
</tr>
<tr>
<td>HDL cholesterol (%\geq60 mg/dl)</td>
<td>90.9</td>
<td>90</td>
<td>88.5</td>
<td>92.3</td>
</tr>
<tr>
<td>Triglycerides (%\geq150 mg/dl)</td>
<td>54.5</td>
<td>45.5</td>
<td>42.3</td>
<td>42.3</td>
</tr>
<tr>
<td>LDL cholesterol (%\geq110 mg/dl)</td>
<td>36.4</td>
<td>40</td>
<td>23.1</td>
<td>53.8</td>
</tr>
<tr>
<td>Fasting glucose (%\geq120 mg/dl)</td>
<td>72.7</td>
<td>83.3</td>
<td>84.6</td>
<td>73.1</td>
</tr>
<tr>
<td>HbA1c (%\geq7%)</td>
<td>63.6</td>
<td>73.3</td>
<td>73.1</td>
<td>65.4</td>
</tr>
<tr>
<td>CRP (%\geq1 mg/dl)</td>
<td>66.7</td>
<td>33.3</td>
<td>11.5</td>
<td>11.5</td>
</tr>
<tr>
<td>Serum adiponectin (%\geq5 μg/dl)</td>
<td>77.3</td>
<td>50</td>
<td>73.1</td>
<td>50</td>
</tr>
<tr>
<td>MDA (%\geq4.5 mmol/ml)</td>
<td>9.1</td>
<td>46.7</td>
<td>26.9</td>
<td>34.6</td>
</tr>
<tr>
<td>Catalase (%\geq3.5 U/mg protein)</td>
<td>18.2</td>
<td>23.3</td>
<td>23.1</td>
<td>19.2</td>
</tr>
</tbody>
</table>

UACR = urinary albumin/creatinine ratio; GFR = glomerular filtration rate; SBP = systolic blood pressure; DBP = diastolic blood pressure; CRP = C-reactive protein; LDL = Low Density Lipoprotein; HDL = High Density Lipoprotein; BMI = body mass index; MDA = malondialdehyde; HbA1c = glycated hemoglobin

Table 3. The best a^+_j, $j = 1, 4$ and the worst a^-_j, $j = 1, 4$ values of all criteria

<table>
<thead>
<tr>
<th>Parameters</th>
<th>$j=1$</th>
<th>$j=2$</th>
<th>$j=3$</th>
<th>$j=4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(UACR\geq30 mg/g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a^+_j</td>
<td>90.9</td>
<td></td>
<td></td>
<td>5.4</td>
</tr>
<tr>
<td>a^-_j</td>
<td>12.1</td>
<td>90.3</td>
<td>11.1</td>
<td>91.9</td>
</tr>
</tbody>
</table>

Table 4. The values S_i and R_i, $i = 1, 18$

<table>
<thead>
<tr>
<th>Parameters</th>
<th>S_i</th>
<th>R_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>2.13</td>
<td>0.69</td>
</tr>
<tr>
<td>Age</td>
<td>1.98</td>
<td>0.66</td>
</tr>
<tr>
<td>Duration of diabetes</td>
<td>1.95</td>
<td>0.63</td>
</tr>
<tr>
<td>Metabolic syndrome</td>
<td>1.95</td>
<td>0.75</td>
</tr>
<tr>
<td>BMI</td>
<td>2.14</td>
<td>0.96</td>
</tr>
<tr>
<td>Waist circumference</td>
<td>1.97</td>
<td>1.00</td>
</tr>
<tr>
<td>SBP</td>
<td>1.95</td>
<td>0.65</td>
</tr>
<tr>
<td>DBP</td>
<td>2.31</td>
<td>0.77</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>2.37</td>
<td>0.81</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>2.20</td>
<td>1.00</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>2.43</td>
<td>0.77</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>2.08</td>
<td>0.88</td>
</tr>
<tr>
<td>HbA1c</td>
<td>2.19</td>
<td>0.75</td>
</tr>
<tr>
<td>CRP</td>
<td>1.91</td>
<td>1.00</td>
</tr>
<tr>
<td>Serum adiponectin</td>
<td>1.53</td>
<td>0.54</td>
</tr>
<tr>
<td>MDA</td>
<td>2.53</td>
<td>1.00</td>
</tr>
<tr>
<td>Catalase</td>
<td>2.19</td>
<td>0.96</td>
</tr>
</tbody>
</table>

SBP = systolic blood pressure; DBP = diastolic blood pressure; CRP = C-reactive protein; LDL = Low Density Lipoprotein; HDL = High Density Lipoprotein; BMI = body mass index; MDA = malondialdehyde; HbA1c = glycated hemoglobin

Step 3. The minim and maximum values for S_i and R_i, $i = 1, 18$ were: $S^* = 1.53$, $S^- = 2.53$, $R^* = 0.54$, $R^- = 1.00$.

Step 4. S, R and Q in decrease order were given in Table 5.
Table 5. S, R and Q in decrease order

<table>
<thead>
<tr>
<th>Parameters</th>
<th>S</th>
<th>Parameters</th>
<th>R</th>
<th>Parameters</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum adiponectin</td>
<td>0.00</td>
<td>Triglycerides</td>
<td>0.00</td>
<td>Serum adiponectin</td>
<td>0.00</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>0.18</td>
<td>Duration of diabetes</td>
<td>0.09</td>
<td>Triglycerides</td>
<td>0.18</td>
</tr>
<tr>
<td>CRP</td>
<td>0.19</td>
<td>SBP</td>
<td>0.13</td>
<td>Duration of diabetes</td>
<td>0.31</td>
</tr>
<tr>
<td>SBP</td>
<td>0.21</td>
<td>Age</td>
<td>0.13</td>
<td>SBP</td>
<td>0.33</td>
</tr>
<tr>
<td>Duration of diabetes</td>
<td>0.21</td>
<td>Gender</td>
<td>0.16</td>
<td>Age</td>
<td>0.35</td>
</tr>
<tr>
<td>Metabolic syndrome</td>
<td>0.21</td>
<td>Metabolic syndrome</td>
<td>0.23</td>
<td>Gender</td>
<td>0.46</td>
</tr>
<tr>
<td>Waist circumference</td>
<td>0.22</td>
<td>LDL cholesterol</td>
<td>0.25</td>
<td>Metabolic syndrome</td>
<td>0.44</td>
</tr>
<tr>
<td>Age</td>
<td>0.23</td>
<td>DBP</td>
<td>0.25</td>
<td>Fasting glucose</td>
<td>0.56</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>0.28</td>
<td>Total cholesterol</td>
<td>0.29</td>
<td>Fasting glucose</td>
<td>0.64</td>
</tr>
<tr>
<td>Gender</td>
<td>0.30</td>
<td>Catalase</td>
<td>0.45</td>
<td>Total cholesterol</td>
<td>0.64</td>
</tr>
<tr>
<td>BMI</td>
<td>0.30</td>
<td>Fasting glucose</td>
<td>0.36</td>
<td>Catalase</td>
<td>0.69</td>
</tr>
<tr>
<td>Catalase</td>
<td>0.33</td>
<td>MDA</td>
<td>0.46</td>
<td>Fasting glucose</td>
<td>0.70</td>
</tr>
<tr>
<td>HbA1c</td>
<td>0.33</td>
<td>BMI</td>
<td>0.46</td>
<td>MDA</td>
<td>0.70</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>0.34</td>
<td>HDL cholesterol</td>
<td>0.50</td>
<td>BMI</td>
<td>0.74</td>
</tr>
<tr>
<td>DBP</td>
<td>0.39</td>
<td>CRP</td>
<td>0.50</td>
<td>Catalase</td>
<td>0.78</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>0.42</td>
<td>Waist circumference</td>
<td>0.50</td>
<td>HDL cholesterol</td>
<td>0.84</td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>0.45</td>
<td></td>
<td></td>
<td>MDA</td>
<td>1.00</td>
</tr>
<tr>
<td>MDA</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SBP = systolic blood pressure; DBP = diastolic blood pressure; CRP = C-reactive protein; LDL = Low Density Lipoprotein; HDL = High Density Lipoprotein; BMI = body mass index; MDA = malondialdehyde; HbA1c = glycated hemoglobin

Step 5. We were interested about the hierarchy of the risk factors, not in only one solution.

The most influenced factor for the state of CKD was serum adiponectin (Q and S had minimum values for serum adiponectin and:

\[Q(\text{triglycerides}) - Q(\text{serum adiponectin}) = 0.18 \geq 0.059, \]

where triglycerides was the alternative with second position in the ranking list by Q and

\[\Delta Q = \frac{1}{18 - 1} = 0.059. \]

We maintained the condition C1 and C2 to found the second risk factor that influenced CKD. Triglycerides was the second factor in the hierarchy (in Q and S was in the second position and

\[Q(\text{duration of diabetes}) - Q(\text{triglycerides}) = 0.13 \geq 0.059. \]

We continued to rank the factors. The third position was occupied by duration of diabetes, SBP and age:

\[Q(\text{SBP}) - Q(\text{duration of diabetes}) = 0.02 < 0.059, \]

\[Q(\text{AGE}) - Q(\text{duration of diabetes}) = 0.04 < 0.059, \]

\[Q(\text{metabolic syndrome}) - Q(\text{duration of diabetes}) = 0.13 \geq 0.059. \]

In the 6th position was metabolic syndrome and gender:

\[Q(\text{gender}) - Q(\text{metabolic syndrome}) = 0.02 < 0.059, \]

\[Q(\text{HbA1c}) - Q(\text{metabolic syndrome}) = 0.12 \geq 0.059. \]

In the 8th position HbA1c had been ranked:

\[Q(\text{fasting glucose}) - Q(\text{HbA1c}) = 0.08 \geq 0.059. \]

In the 9th position were fasting glucose, DBP, CRP:

\[Q(\text{DBP}) - Q(\text{fasting glucose}) = 0.00 < 0.059, \]

\[Q(\text{CRP}) - Q(\text{fasting glucose}) = 0.05 < 0.059, \]

\[Q(\text{LDL - cholesterol}) - Q(\text{fasting glucose}) = 0.06 \geq 0.059. \]

In the 12th position were LDL-cholesterol, total-cholesterol and waist circumference:

\[Q(\text{total - cholesterol}) - Q(\text{LDL - cholesterol}) = 0.01 < 0.059, \]
VIKOR Method for Diabetic Nephropathy Risk Factors Analysis

Discussion

The aim of our study (to rank the risk factors of micro albuminuria and GFR in order to evaluate more accurately the risk for CKD (UACR ≥ 30mg/g and/or GFR ≤ 90ml/min) in type 2 diabetes patients with VIKOR method) was fulfilled.

Serum adiponectin was ranked in the first position in the VIKOR hierarchy, which means that had the strongest influence on UACR and GFR compared with the other tested parameters. Serum adiponectin had the highest relative risk (RR) for both criteria UACR and GFR (UACR ≥ 30mg/g, RR = 2.06; GFR ≤ 90ml/min, RR = 1.65) [35]. TOPSIS method in Bondor and VIKOR method in our study found serum adiponectin to be the best alternative for these criteria. When an alternative was in the top of the ranking for all the criteria, VIKOR method was in concordance and found the serum adiponectin in the first position of the hierarchy.

We can say also that triglycerides, duration of diabetes, systolic blood pressure and age influenced CKD.

MDA influenced CKD as a protective factor. MDA had the lowest mean of the relative risk (RR) for UACR and GFR (UACR ≥ 30mg/g, RR = 0.23; GFR ≤ 90ml/min, RR = 0.85) except waist circumference for which RR could not be compute [35]. TOPSIS method in Bondor and VIKOR method in our study found MDA to be the worst alternative for these criteria [35]. When an alternative was in the worst position (statistic findings), VIKOR method was in concordance and found the MDA in the last position of the hierarchy.

CRP was in the second position in the UACR hierarchy and in the 10th position in the GFR hierarchy [35]. We consider this situation as a conflicting one. VIKOR method rank CRP in 9th position, TOPSIS method rank CRP in second position [4].

There were other conflicting situations, for systolic blood pressure, triglycerides, metabolic syndrome, fasting glucose, BMI and total-cholesterol were TOPSIS method and VIKOR method found similar results [35].

Spearman correlation coefficient between VIKOR method and TOPSIS method hierarchy position was r = 0.70, p = 0.001. Spearman correlation coefficient between VIKOR method and RR hierarchy positions for UACR ≥ 30mg/g was r = 0.50, p = 0.03 compared with TOPSIS method r = 0.64, p = 0.004. Spearman correlation coefficient between VIKOR method and RR hierarchy positions for GFR ≤ 90ml/min was r = 0.51, p = 0.03 compared with TOPSIS method r = 0.43,
p=0.07. We can say that VIKOR method was significant correlated with both criteria, but TOPSIS method was significant correlated with only one criteria.

VIKOR method gave not only a hierarchy of risk factors as TOPSIS method, but, also provide “clusters” (factors receive the same position in the hierarchy if the difference between them are less then a threshold value) of similarity between risk factors.

VIKOR method was modified for interval numbers [39] and for fuzzy environment [40-41]. VIKOR method is not as popular as TOPSIS method, but this does not mean it’s not a good method for solving MCDM problems inclusive in medical field.

Conclusions

In this case, a disease with multicriteria diagnostic, we found that VIKOR method was an adequate technique for ranking the risk factors. The hierarchy of risk factors was correlated with the hierarchy gave by TOPSIS method. New information was found about the similar position in the hierarchy for some factors.

VIKOR method it’s not a multivariate technique, we cannot apply VIKOR to study the effect of association of two or more factors. VIKOR method can be used when we have conflicting criteria or we search for similar alternatives, when we have small samples or if the relative risk cannot be computed (ex. waist circumferences).

List of abbreviations

T2DM - type 2 diabetes mellitus
VIKOR - vlsekriterijumska optimizacija i kompromisno resenje – serbian; multicriteria optimization and compromise solution
UACR - urinary albumin/creatinine ratio
GFR - glomerular filtration rate
TOPSIS - technique for order preference by similarity to ideal solution
CKD - chronic kidney disease
MCDM - multicriteria decision making method
MDA - malondialdehyde
BMI - body mass index
SBP - systolic blood pressure
DBP - diastolic blood pressure
HbA1c - glycated hemoglobin
CRP - C-reactive protein
ROC - receiver operating characteristic
RR - relative risk

Ethical Issues

The study was approved by the ethical committee of our university; informed and written consent was obtained from each participant.

Conflict of Interest

The authors declare that they have no conflict of interest.
Acknowledgements

The author CB was partly supported by European Social Fund within the Sectorial Operational Program - Human Resources Development 2007-2013-POSDRU /89/1.5/S/58965.

References