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Abstract 
Combining biomarkers and their statistics is used to increase the prediction performance of a 
diagnosis, but no gold standard method exists. We introduced and evaluated an approach using linear 
combinations of summary-based statistics tested in logistic regression models with 10-fold repeated 
cross-validation. We used AUC (area under the ROC- receiver operating characteristic curve), the 
value of the Youden index, sensitivity (Se), specificity (Sp), diagnostic odds ratio (DOR), Efficiency 
Index (EI) and Inefficiency Index (InI) as performance metrics on the real-data set. We tested the 
approaches in multivariate normal distribution simulations with 4, 10, and 100 biomarkers and on 
real data. The results show that the summary-based models, especially minimum-maximum-median 
regression model (LR(MMM)) and minimum-maximum-interquartile range model (LR(MMIQR)), 
have similar performances or slightly better performances than the classical LR model regardless of 
the imposed mean of biomarkers or covariance matrixes on both simulated and real-data. The 
differences in AUCs were higher as the number of combined biomarkers increased (LR(MMIQR) 
model vs. LR model: 0.09 equal or unequal means of four biomarkers, 0.26 equal means, and 0.11 
unequal means of 10 biomarkers). In real data, the linear combination of four biomarkers on 
LR(MMM) and LR(MMIQR) slightly increases the AUCs compared to the LR model. The model's 
performances were marginally low and without clinical relevance. The linear combination of 
summary-based statistics, specifically LR(MMM) and LR(MMIQR), exhibits similar performances as 
the classical LR model when biomarkers are linearly combined to increase diagnostic accuracy. 
Although the models perform on simulation data-sets, no clinical relevance of the combination is 
observed in the applied real-data. 

Keywords: ROC (receiver operating characteristic curve); Logistic regression; Youden; Biomarker; 
Diagnostic accuracy 

Introduction 

The patient’s clinical and paraclinical data are used to identify a possible medical condition or 
differentiate between different diseases. Accuracy, defined as the ability of a test to determine those 
with and without the disease of interest correctly, is essential in medical diagnosis [1]. High accuracy 
of a diagnostic test is beneficial for the patients and the medical providers by shortening the time-to-
treatment initiation [2] and increasing the diagnostic cost-effectiveness [3].  
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Biomarkers are measured biological characteristics used to identify the existence of a specific 
disease [4], but since they are sensitive to particular aspects of the disease, one biomarker exhibits 
limited performances [5]. An increase in diagnostic performance by identification of new biomarkers 
[4] or by combining different biomarkers is of interest and has been reported [6-9]. The methods 
used to combine biomarkers available in the scientific literature are linear [10-12], non-linear [14], or 
flexible [15]. However, most methods are linear because it is easier to implement in clinical settings 
and to interpret. 

The ROC (receiver operating characteristics) method is used to determine the diagnostic 
performance of a biomarker by plotting sensitivity (Se, the ability of the test to identify subjects with 
the disease) against (1-specificity) (Sp, the ability of a test to determine the subjects without the 
disease). The performance of a diagnostic test can be estimated by the area under the curve (AUC) 
along with 95% confidence intervals in the case of a measured biomarker. A higher value for the 
AUC indicates a higher diagnostic performance (AUC=1 belongs to a test able to discriminate 
subjects with and without the disease of interest perfectly) [16,17]. The cut-off values from the ROC 
curve can be obtained for the biomarker (each value having a diagnostic Se and Sp). The Youden (J) 
index is used to estimate the cut-off value (max(Se+Sp-1)) that correctly classifies most subjects [18]. 
Other methods have been introduced to define the cut-off values: min(Euclidean distance between 
the ROC curve and the (0,1) point) [19], max(χ2) in 2×2 contingency table [20], max(Se*Sp) [21], 
min(IU) (IU is Index of Union, where UI = (|Se-AUC|+|Sp-AUC|) [22], or other [23,24]. The 
AUC (≥0.9 indicate an excellent diagnostic test) and the J index measure are most frequently used to 
evaluate the diagnostic performance of a biomarker [25,26]. 

Logistic regression (LR) models are frequently used to combine biomarkers, where the predicted 
probability of the disease is plotted in ROC curves against the observed probability. Several 
approaches have been developed and evaluated considering the multivariate normality assumption 
[27], the Mann-Whitney statistic [28], step-wise methods for outcome diagnostic as an ordinal variable 
(three outcomes) [29], empirical likelihood ratios [30], the minimum and maximum of the biomarkers 
[31] or the minimum, maximum, median and interquartile range of the biomarkers [32]. The proposed 
approaches aimed to maximize the AUC [28, 30] or pAUC (partial AUC) [31,33] 

Aznar-Gimeno et al. [32] extended the Liu et al. method [31] by adding the median or interquartile 
(IQR) range to the min-max values of biomarkers applied to maximize the J index. They considered 
any theoretical distribution of the continuous biomarkers, used a step-wise approach to select the 
best linear combination of summary statistics, and applied a simple cross-validation approach to 
validate the method [32]. The Aznar-Gimeno et al. [32] method proved better than the Liu et al. min-
max approach [31], with higher Se and Sp on real-data.  

We proposed a new approach that incorporates the summary statistics (Min-Max, Min-Max-
Median, and Min-Max-IQR) in logistic regression models to increase diagnostic accuracy in 
combining normally distributed biomarkers. 

Material and Method 

The code used in our study was written using the R software (R Project for Statistical Computing 
– version 4.1.1) under the RStudio GUI build 576. 

Simulated Data-Sets 

The data-sets were created using the method described by Aznar-Gimeno et al. [32]. The 
simulated data was made using the MASS R package (under the mvrnorm command). We generate 100 
random samples of 30/100/500 virtual subjects per group (disease-free and disease group) for each 
scenario. The generated values of biomarkers followed a theoretical normal distribution (4/10/100 
biomarkers) by group (disease and disease-free groups). We conducted the simulations for null means 
of biomarkers (m1=0) in the disease-free population. In the disease population, we considered equal 
means (m2=1.0) or different means (Figure 1). The variance for each biomarker was set to 1, and the 
covariance matrixes were set to be equal (Σ1 = Σ2) or different between populations (Σ1 ≠ Σ2, see 
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Figure 1). We evaluated the same covariance matrixes (Σ1 = Σ2) as independence (Σ1 = Σ2 = I), 
medium correlation (Σ1 = Σ2 = 0.5*I + 0.5*J), and negative correlation (Σ1 = Σ2 = -0.1*I),where I 
is the identity matrix, J is a matrix of all ones. In the scenarios with different covariance matrixes, we 
evaluated high correlation (Σ1=0.3*I+0.7*J) and low correlation (Σ2=0.7*I+0.3*J). 

 
Figure 1. Simulated populations used in the study based on the number of biomarkers, covariance 
matrixes, and biomarker means in the population with the disease (equal/different). I = identity 
matrix, J = matrix of all ones. 
 

In each simulated data-set, for each population (disease-free and disease), we calculated five 
parameters: X_max – the maximum value of the biomarker, X_min – the minimum value of the 
biomarker, X_q50 – the median value of the biomarker X_q25 – the 25th percentile of the biomarker, 
and X_q75 – the 75th percentile of the biomarker. 

Proposed Approach 

One-hundred random sets were simulated for each scenario. Logistic regression models were 
obtained using the resubtitution method and a repeated 10-fold cross-validation approach for each 
set. We used the package caret under the train command, R. Four models were created (Table 1). 

Table 1. Used models and covariates. 

Model Abb Covariates 

Classic logistic regression  LR X1+X2+…+Xk* 

Minimum-maximum  LR(MM) X_max+X_min 

Minimum-maximum-median  LR(MMM) X_max+X_min+X_q50 

Minimum-maximum-interquartile range  LR(MMIQR) X_max+X_min+X_q50+X_q25+X_q75 

* k was 4/10/100 according to the number of biomarkers; X_max = the highest value; X_min = the smallest value; 
X_q50 = the value of median; X_q25 = the value of the 25th percentile; X_q75 = the value of the 75th percentile 

 

A ROC curve was created for each binormal model and scenario using the predicted probability 
of disease against the observed probability. We used the pROC package under the roc command, R 
software, for this task. The AUC and the Youden index were calculated for each set, and the average 
and the standard deviation were reported. 
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R Code by Example  

Examples of written lines of code are presented to exemplify the applied approach. The author’s 
comments are highlighted with “#” symbol before the text. In this example, a repeated 10-fold cross-
validation method is used in the scenario where values for four biomarkers are simulated using 30 
subjects in each group, the means of biomarkers in the disease group are different (m2=(0.2, 0.5, 0.7, 
1.0)) as well as the covariance matrixes are between groups (Σ1=0.3I+0.7J, Σ2= 0.7I+0.3J):  

rm(list = ls())  
options(warn=-1) #for ignoring any errors in the output 
library(pROC) 
library(MASS)  
library(caret) 
mu1 <- c(0,0,0,0) #the mean matrix for the disease-free population 
stddev <-c(1,1,1,1) #the variance was 1 for each biomarker 
mu2 <- c(0.2,0.5,1,0.7) #the mean matrix for the disease group, with different means of 

biomarkers  
ident <- diag(4) #the identity matrix 
mat1 <- matrix(1,4,4) #the matrix of all ones 
matf1 <- 0.3*ident+0.7*mat1 #base for the covariance matrix for the disease-free population 
matf2 <- 0.7*ident+0.3*mat1 # base for the covariance matrix for the population with the disease 
covMat1 <- stddev%*% t(stddev) * matf1 #creating the covariance matrix for the disease-free 

population 
covMat2 <- stddev%*% t(stddev) * matf2 #creating the covariance matrix for the population with 

the disease 
youden1 <- as.numeric() 
auc_roc1 <- as.numeric() 
youden2 <- as.numeric() 
auc_roc2 <- as.numeric() 
youden3 <- as.numeric() 
auc_roc3 <- as.numeric() 
youden4 <- as.numeric() 
auc_roc4 <- as.numeric() #defining the Youden index and the AUC value for each model as 

numeric values  
data_ctrl <- trainControl(method="repeatedcv", repeats= 10, savePredictions=TRUE, classProbs=TRUE, 

number=10, p=0.9, summaryFunction = twoClassSummary, returnResamp = "all") #the cross-validation 
instruction, for a 10-fold repeated cross-validation 

for (i in 1:100) #the command to repeat the same process 100 times to obtain 100 different sets 
of samples and outputs 

{ 
set.seed(i) 
dat1 <- mvrnorm(n=30, mu=mu1, Sigma=covMat1, empirical=TRUE) 
dat2 <- mvrnorm(n=30, mu=mu2, Sigma=covMat2, empirical=TRUE) #using the TRUE criteria, the 

mean values and the covariance matrixes obtained will be exactly the ones specified 
condition <- rep(x="normal", times=30) 
df1 <- data.frame(condition, dat1) 
condition <- rep(x="diseased", times=30) 
df2 <- data.frame(condition, dat2) #creating a virtual database by combining the simulated values 

and a column in which criteria for the disease-free/disease population is specified  
df1$X_max <- apply(df1[, 2:5], 1, max) 
df1$X_min <- apply(df1[, 2:5], 1, min) 
df1$X_q50 <- apply(df1[, 2:5], 1, quantile, probs=0.5) 
df1$X_q25 <- apply(df1[, 2:5], 1, quantile, probs=0.25) 
df1$X_q75 <- apply(df1[, 2:5], 1, quantile, probs=0.75) 
df2$X_max <- apply(df2[, 2:5], 1, max) 
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df2$X_min <- apply(df2[, 2:5], 1, min) 
df2$X_q50 <- apply(df2[, 2:5], 1, quantile, probs=0.5) 
df2$X_q25 <- apply(df2[, 2:5], 1, quantile, probs=0.25) 
df2$X_q75 <- apply(df2[, 2:5], 1, quantile, probs=0.75) #calculation of minimum, 

maximum,median, and interquartile range for each population group 
datafinal <- rbind(df1, df2) #obtaining the final database by combining the first two 
datafinal <- within(datafinal, {condition <- as.factor(condition)}) 
model1 <- train(condition~X1+X2+X3+X4, data=datafinal, method="glm", 

family=binomial(link=logit),trControl=data_ctrl, metric = "ROC", na.action = na.pass) #creating a logistic 
regression model with repeated 10-fold cross-validation, the model in this example is the classic one 
(LR) 

roc1 <-roc(model1$pred$obs, model1$pred$diseased) #generating the ROC curve 
a1 <- coords(roc1, "best", ret=c("tpr", "tnr", "youden")) #calculating the performance of the ROC 

curve (here along with the Youden index are also specified the Se and the Sp) 
youden1[i] <- a1$youden[1] - 1 
auc_roc1[i] <- roc1$auc #specifying the values of the parameters (Youden index and AUC value) 

for each ROC curve 
model2 <- train(condition~X_max+X_min, data=datafinal, method="glm", 

family=binomial(link=logit),trControl=data_ctrl, metric = "ROC", na.action = na.pass) 
roc2 <-roc(model2$pred$obs, model2$pred$diseased) 
a2 <- coords(roc2, "best", ret=c("tpr", "tnr", "youden")) 
youden2[i] <- a2$youden[1] - 1 
auc_roc2[i] <- roc2$auc 
model3 <- train(condition~X_max+X_min+X_q50, data=datafinal, method="glm", 

family=binomial(link=logit),trControl=data_ctrl, metric = "ROC", na.action = na.pass) 
roc3 <-roc(model3$pred$obs, model3$pred$diseased) 
a3 <- coords(roc3, "best", ret=c("tpr", "tnr", "youden")) 
youden3[i] <- a3$youden[1] - 1 
auc_roc3[i] <- roc3$auc 
model4 <- train(condition~X_max+X_min+X_q50+X_q25+X_q75, data=datafinal, method="glm", 

family=binomial(link=logit),trControl=data_ctrl, metric = "ROC", na.action = na.pass) 
roc4 <-roc(model4$pred$obs, model4$pred$diseased) 
a4 <- coords(roc4, "best", ret=c("tpr", "tnr", "youden")) 
youden4[i] <- a4$youden[1] - 1 
auc_roc4[i] <- roc4$auc 
} 
mean(youden1) 
sd(youden1) 
mean(auc_roc1) 
sd(auc_roc1) 
mean(youden2) 
sd(youden2) 
mean(auc_roc2) 
sd(auc_roc2) 
mean(youden3) 
sd(youden3) 
mean(auc_roc3) 
sd(auc_roc3) 
mean(youden4) 
sd(youden4) 
mean(auc_roc4) 
sd(auc_roc4) #obtaining the averages and the standard deviations of the Youden indexes and the 

AUC values for each of the four logistic models 
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Evaluation of the Approach on Real Data 

The algorithm was evaluated on real data using the raw data of Ciocan et al. [34,35]. The objective 
was to compare the performance of the combined biomarkers models with univariate ROC curves 
for the prediction of colorectal cancer metastasis using lymphocyte (Lim), monocytes (Mon), total 
proteins (TProt), and albumin (Alb). Limited performances of univariate models were previously 
reported (lymphocyte-to-monocyte ratio-LMR=(Absolute Lymphocyte Count)/(Absolute Monocyte 
Count) and Prognostic Nutritional Index - PNI = 10 × Serum Albumin (g/dL) + 0.005 × 
Lymphocyte Count (per mm3))) [35]. The data-set used contained information from 1688 patients, 
with the outcome as metastasis (present/absent as 418/1270) and numerical value for biomarkers 
[34]. 

The biomarkers (Lim, Mon, TProt, and Alb) were normalized in each group (with and without 
metastasis) using the STANDARDIZE function in Microsoft Office Excel (Microsoft Office 365). 
The z-score for each value was used in the analysis. Maximum, minimum, median, and interquartile 
ranges were computed, and logistic regression models were applied using the resubstitution and the 
10-fold cross-validation methods. The AUC values with 95% confidence intervals along with the Se, 
Sp, diagnostic odds ratio (DOR) [36], Efficiency Index (EI) [37], and Inefficiency Index (InI) [38] 
were calculated and are reported. We used the clinical utility index [39] to classify the performance of 
the diagnostic test for case-finding (rule-in) or screening (rule-out). 

Results 

Simulated Data 

The mean values of AUCs and Youden index varied with the sample size, method, number of 
biomarkers, and covariance matrix, regardless of the mean of biomarkers in the populations (Figures 
2 to 6; SupplementaryMaterial – Tables S1-S5). As expected, the highest dispersion is observed on 
small sample size and cross-validation (Figures 2 to 6; Supplementary material – Tables S1-S5). 

 

 

Figure 2. Distribution of AUCs for 100 random samples with normally distributed biomarkers and 
equal means: four biomarkers. (R = resubstitution method, CV = cross-validation method. The bar is the value of 

the mean and the whiskers are the values of the standard deviation. I = identity matrix, J = matrix of all ones; LR = 
logistic regression; M=min; M=max; M=median; IQR = interquartile range; AUC = area under the curve) 
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Figure 3. Distribution of AUCs for 100 random samples with normally distributed biomarkers and 
equal means: ten biomarkers. (R = resubstitution method, CV = cross-validation method. The bar is the value of 

the mean and the whiskers are the values of the standard deviation. I = identity matrix, J = matrix of all ones; LR = 
logistic regression; M=min; M=max; M=median; IQR = interquartile range; AUC = area under the curve) 

 

Figure 4. Distribution of AUCs for 100 random samples of normally distributed biomarkers with 
different means: four biomarkers. (R = resubstitution method, CV = cross-validation method. The bar is the value 

of the mean and the whiskers are the values of the standard deviation. I = identity matrix, J = matrix of all ones; LR = 
logistic regression; M=min; M=max; M=median; IQR = interquartile range; AUC = area under the curve) 
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Figure 5. Distribution of AUCs for 100 random samples of normally distributed biomarkers with 
different means: ten biomarkers. (R = resubstitution method, CV = cross-validation method. The bar is the value 

of the mean and the whiskers are the values of the standard deviation. I = identity matrix, J = matrix of all ones; LR = 
logistic regression; M=min; M=max; M=median; IQR = interquartile range; AUC = area under the curve) 

The increase of the number of normally distributed biomarkers at 100 (equal means of 
biomarkers), led, as expected, to overfitting when sample sizes are small (30/30), excepting LR and 
LR(MM) in case of resubstitution method (Figure 6). In the cross-validation, in most of the cases, 
the LR(MM), LR(MMM), LR(MMIQR) models outperform the LR model.  

 

 

Figure 6. Distribution of AUCs for 100 random samples with equal means of 100 normally 
distributed biomarkers with equal means. (R = resubstitution method, CV = cross-validation method. The bar is 

the value of the mean and the whiskers are the values of the standard deviation. I = identity matrix, J = matrix of all ones; 

LR = logistic regression; M=min; M=max; M=median; IQR = interquartile range; AUC = area under the curve) 

Real Data 

The univariate ROC curves obtained after normalizing the biomarker’s values show that the 
lymphocyte counts (Lim) have the highest performance (Table 2). The resubstitution and the cross-
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validation method had similar results when combining the biomarkers (Table 2), with the highest 
Youden index in the LP model (0.194 for resubstitution method and 0.173 for cross-validation 
method). The lowest performance is observed in the LR(MM) model in both methods, while the LR 
model has the best prediction performances (Table 2). 

Table 2. Metric of diagnostic performance by methods and models obtained in real-data analysis 

Method 
Biomarker 

/Model 
AUC [95% CI] Se (%) Sp (%) DOR EI InI 

Univariable ROC 
curve 

Lim 0.600 [0.567-0.633] 45.45 72.44 2.2 1.9 0.5 

Mon 0.523 [0.490-0.556] 30.14 75.98 1.4 1.8 0.5 

TProt 0.524 [0.492-0.555] 51.43 53.85 1.2 1.1 0.9 

Alb 0.532 [0.501-0.563] 74.16 31.96 1.3 0.7 1.4 

Combined 
biomarkers 

Resubstitution 

LR 0.613 [0.581-0.646] 49.52 69.92 2.3 1.8 0.5 

LR(MM) 0.560 [0.529-0.592] 54.78 56.53 1.6 1.3 0.8 

LR(MMM) 0.566 [0.534-0.597] 50.95 59.52 1.5 1.3 0.7 

LR(MMIQR) 0.566 [0.534-0.597] 48.08 62.04 1.5 1.4 0.7 

Combined 
biomarkers  

Cross-validation 

LR 0.606 [0.595-0.616] 46.86 70.50 2.1 1.8 0.5 

LR(MM) 0.554 [0.544-0.564] 58.61 51.42 1.5 1.1 0.9 

LR(MMM) 0.557 [0.547-0.567] 49.40 59.52 1.4 1.3 0.8 

LR(MMIQR) 0.553 [0.543-0.563] 42.44 65.88 1.4 1.5 0.7 
Lim = lymphocyte; Mon = monocytes; Tprot = total proteins; Alb = albumin; LR = regression model; MM = X_min, 

X_max; MMM = X_min, X_max, X_q50; MMIQR = X_min, X_max, X_Q25, X_75; AUC = area under the ROC curve; 
CI = confidence interval; Se = Sensitivity; Sp = Specificity; DOR = diagnostic odds ratio; EI = Efficiency Index; InI = 

Inefficiency Index 

 
In both methods applied to combine the biomarkers, only the LR model performs similarly to the 

Lim. The LR(MMIQR) method in cross-validation exhibits similar performances in ruling-in and 
ruling-out as the LR mode (Figure 7). However, poor ability in case finding (rule-in) and fair 
performances in screening (rule-out) are observed, showing limited clinical relevance. 

 

Figure 7. Performances based on clinical utility of the biomarker(s) for case-finding (rule-in) and 
for screening (rule-out). (Lim = lymphocyte; Mon = monocytes; Tprot = total proteins; Alb = albumin; LR = 

regression model; MM = X_min, X_max; MMM = X_min, X_max, X_q50; MMIQR = X_min, X_max, X_Q25, X_75) 

Discussion 

Our simulation study shows different performances according to the imposed scenario 
(covariance matrixes, method- substitution vs. cross-validation, and sample size), generally with high 
performances of LR and LR(MMIQR) models. As expected, including more biomarkers in the model 
leads to an increase in model performances. On real-data, the LR models showed performances 
outside the clinical relevance, with the outperformance of the LR model, in both resubstitution and 
cross-validation, all the proposed approaches (LR(MM), LR(MMM) and LR(MMIQR) models), and 
with best performances obtained by the LR(MMIQ) models. 

    Lim Mon TProt Alb 

Univariable  
case-finding very poor very poor very poor very poor 

screening fair fair very poor very poor 
            

    LR LR(MM) LR(MMM) LR(MMIQR) 

Resubstitution  
case-finding very poor very poor very poor very poor 

screening fair poor poor poor 

Cross-validation  
case-finding very poor very poor very poor very poor 

screening fair poor poor fair 
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We implemented a method similar to Aznar-Gimeno et al. [32] to increase the diagnostic accuracy 
of biomarkers based on their statistics (minimum, maximum, median, and interquartile range) 
compared to the classical logistic regression model. We incorporated the summary statistics in a 
logistic regression model, opposite to a step-wise approach [32], and we used 10-fold repeated cross-
validation instead of simple cross-validation [32]. The use of smaller random samples in our study 
could explain our slightly lower performances compared to Aznar-Gimeno et al. [32]. 

In simulated data, two similarities were observed when equal and unequal means of the 
biomarkers were investigated (Figures 2-5). First, as expected, increasing the number of biomarkers 
increases the performances, especially for the proposed models (LR(MM), LR(MMM), and 
LR(MMIQR)). Second, in terms of performances defined as high AUC and high Youden index, the 
worst model is LR(MM), and the best performing model is LR model (Figures 2-5, Tables S1-S4).  

Specific behavior could be observed when the same mean of biomarkers was imposed (Figures 2 
and 3). The best performant model is the LR(MMIQR) when the sample size is small (30/30), and 
the resubstitution method is used. As the sample size increased, the LR / LR(MMM) or LR(MMIQR) 
showed equivalent performances. In the cross-validation, the LR(MM) / LR(MMM) / LR(MMIQR) 
models perform slightly better than LR; in general, the best performant model is the LR(MMIQR) 
but with a different pattern in different populations sizes. 

The analysis of the results for different means of the biomarkers (Figures 4 and 5), a situation 
closer to what we would have found in clinical practice, showed the following: 1) the LR model has 
highest performances regardless the sample size, the number of biomarkers or the validation method 
in the independence scenario (Σ1 = Σ2 = I) or the medium correlation scenario (Σ1 = Σ2 = 0.5*I + 
0.5*J); 2) the highest performances of the LR(MMIQR), different covariance matrices scenario 
(Σ1=0.3*I+0.7*J, Σ2=0.7*I+0.3*J) for four (resubstitution and cross-validation) and ten biomarkers 
(cross-validation); 3) the outperformance of the LR model in the negative correlation scenario (Σ1 = 
Σ2 = -0.1*I), but with comparable performances of the LR(MMIQR) model; 4) a tendency to overfit, 
especially for the LR model in the independence (Σ1 = Σ2 = I) and the negative correlation scenarios 
(Σ1 = Σ2 = -0.1*I). 

Our results on simulated data (Figures 2-6, Tables S1-S4) are generally similar to those reported 
by Aznar-Gimeno et al. [32] regarding Youden values and the tendency of the models. The slightly 
lower performances of the performances reported in our study compared to those reported by Aznar-
Gimeno et al. [32], show that the lower number of random samples (from 1,000 to 100 in our study) 
and the elimination of the step-wise approach in selecting the models did not have an impact on the 
prediction performances. Our study reports higher performances on the ten biomarkers summary 
statistics-based models in the different correlation scenarios with different means as compared to 
Aznar-Gimeno et al. [32]. We also investigated the 10 biomarkers in negative correlation scenarios 
with different means compared to Aznar-Gimeno et al. [32], the scenario that generally leads to 
overfitting of the models (Figure 5). Overfitting is also observed when the number of combined 
biomarkers increased to 100 in the scenario of equal means of biomarkers in the independence and 
medium correlation scenarios (Figure 6). 

Our results on real data (Table 2) demonstrate the superiority of LR model with similar 
performances of LR(MMM) and LR(MMIQR) models and the lowest performance of the LR(MM) 
model. Our result is similar to the results reported by Aznar-Gimeno et al. [32] on Duchenne 
muscular dystrophy data-set and small for gestational age data-set, when four biomarkers are 
combined, with higher performance of LR model and similar performances of MMM and MMIQR 
models. The similarity of summary statistics models in our real data set could be explained by the 
similar performances in univariable models of the investigated sample (Table 2). The classification 
level based on AUC, DOR (the odds of metastasis is 2.3 times greater for resubstitution and 2.1 for 
cross-validation – LR model), EI (1.8, where 1 is the inflection point and denotes the same accuracy 
and inaccuracy [37,38]), and InI (0.5 for combined biomarkers any method, the value closest to zero 
indicating less inaccuracy – false positive and false negative results [37,38]) shows the absence of 
clinical relevance (Table 2), a result similar to those reported by Ciocan et al. [35]. The reported results 
showed that the combination of biomarkers had only fair abilities in ruling-out (LR model, Figure 7), 
so without clinical relevance and utility. 
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The domain of diagnostic accuracy is investigated by researchers all over the world due to its 
relevance in clinical practice. Gerke and Zapf [40] demonstrated using a simulation environment with 
a heuristic algorithm that the optimal cut-off point is unbiased for a disease prevalence of 0.5, with 
positively biased for a prevalence < 0.5 and negatively biased when disease prevalence is > 0.5. Gerke 
and Zapf [40] also reported a convergence of the optimal cut-off to the true values when the sample 
size exceeds 1,000 subjects. Ciocan et al. [41] also reported that when a ROC model is developed on 
at least 70% of the total available population (n>1,000), the performances of the models are similar 
to the full-model. Remaley et al. [42] introduced a different method of evaluating diagnostic accuracy 
(in comparison to the ROC curve) – prevalence-value-accuracy plots (PVA) in which the effect of 
disease prevalence, false positives, false negatives, and accuracy are incorporated in the diagnostic test 
performance [42]. 

The combinations of biomarkers or their summary statistics are not novel, similar to the use of 
cross-validation and logistic regression. Borowiak and Reed [43] proposed a systematic algorithm to 
combine two diagnostic tests by minimizing false positive and false negative results. They 
demonstrated a lower error rate when combining Doppler ultrasound and pneumoplethysmography 
to diagnose severe carotid stenosis [43]. Esteban et al. [44] proposed a step-by-step method for 
combining multiple biomarkers in multivariate normal and non-normal scenarios using linear 
combinations that maximize the AUC value and demonstrate the similarity with the LR model. In a 
multivariate normal distribution model, Pinksy and Zhu [45] showed that additional biomarkers 
negatively correlated with the primary marker can increase diagnostic accuracy. In contrast, 
biomarkers positively correlated with the primary marker have a smaller added value [45].  

Liu et al. [31] used a linear combination of minimum and maximum values of biomarkers, to 
increase AUCs detected in simulated ROC curves. Aznar-Gimeno et al. [32] demonstrated the 
outperformance of the summary-based statistics models (using min-max-median / min-max-IQR 
models) compared to a min-max approach, although the differences between the two proposed 
models were not significant. Biggs et al. [46] combined different rapid diagnostic tests used to identify 
the dengue virus (IgM- Immunoglobulin M, IgG, and NS1- dengue virus nonstructural protein 1) to 
increase the diagnosis of immune status using logistic regression. They demonstrated the superiority 
of biomarkers combination [46]. 

Several limitations of our study must be highlighted. First, we used restricted criteria on simulated 
data-sets that are not necessarily seen in clinical practice (e.g., equal means of biomarkers and normal 
distribution), using mainly the AUCs and Youden index values, inducing an overestimation. 
Generation of the biomarkers to closely reflect the real-data and known proportion of disease would 
capture the clinical reality and utility more appropriately. However, such a strategy is not a holy grail 
in true AUCs estimation since disease prevalence affects the test performances [47-49] and varies 
from one population to another (e.g., metastases in patients with colorectal cancer 24.8% [35], 30.0-
31.0% [50], 33.0% [51], from 22.6 to 41.1% of lung metastasis [52], 83.3% liver metastasis on patients 
≥ 70 years-n=210 [53]). A solution would be to evaluate the performance of the diagnosis methods 
using other metrics (e.g., “likelihood to be diagnosed or misdiagnosed” [54], BEI- balanced EI - 
efficiency index and UEI- unbiased EI) [38,55]), some of them were previously used in our study 
when we evaluated real data. Second, we investigate only scenarios based on multivariate normal 
distribution, so the results of the proposed approach must also be assessed on distribution-free 
scenarios considering that in real life, raw biomarkers data do not necessarily respect the theoretical 
normal distribution, interactions between different biomarkers, non-linear association between 
biomarkers and the outcome variable etc. All above-listed factors have an impact on the estimation 
of regression coefficients, impacting the accuracy of the model. Third, we did not consider the 
presence of other covariates that could reflect and affect test performances [56-59]. Fourth, using the 
logistic regression method could be seen as a weakness of our study because the results are not in the 
biomarkers space but in the probability space. However, this problem could be solved by an 
implementation of a valid model in an application to assist the medical staff in daily practice.  

Although the proposed methods showed performances in simulated data-sets, no clinical 
relevance was observed in the evaluated real-data set. The evaluation of the proposed approach on 
other real data-sets could appropriately assess the reliability of LR linear combination of summary 
statistics in an increase of the diagnosis accuracy. Once reliable and accurate combination of 
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biomarkers is identified (characterized by an AUC with 95% confidence boundaries exceeding 0.9, 
DOR as larger as possible, EI as larger as possible, InI as closest to zero as possible, positive 
likelihood ratio (PLR) higher than 10, negative LR smaller than 0.1, a high value of positive and 
negative clinical utility index) [25,37,38,39]), the translation towards clinical practice (e.g. model 
integration into an online application) could transfer the knowledge towards daily medical practice. 

Conclusion 

Linear combination of summary-based statistics tested in logistic regression models showed 
performances in in-creasing the diagnostic accuracy, with higher performances, similar to the LR 
model, of minimum-maximum-interquartile range model (LR(MMIQR)) and lower performances of 
minimum-maximum regression model (LR(MM)) on the identification of metastasis in patients with 
colorectal cancer. The proposed approach needs evaluation on other real-data sets to appropriately 
assess the clinical relevance of the proposed approach also considering the presence of covariates.  
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AUC  Area Under the ROC Curve 
C.I.  Confidence Interval 
CV  Cross-Validation 
IQR  Interquartile Range 
LR  Logistic Regression 
MM  Min-Max Approach 
MMIQR Min-Max-IQR Approach 
MMM Min-Max-Median Approach 
NLR  Neutrophil-to-Lymphocyte Ratio 
dNLR Derived Neutrophil-to-Lymphocyte Ratio 
PLR  Platelet-to-Lymphocyte Ratio 
PVA  Prevalence-value-accuracy Plot 
ROC  Receiver Operating Characteristic 
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