
 Applied Medical Informatics

Original Research Vol. 45, No. 2/2023, pp: 70-81

70

[

Optimization of Machine Learning Algorithms with Bagging
and AdaBoost Methods for Stroke Disease Prediction

Helmi Saifullah MANSUR, Nelly Oktavia ADIWIJAYA*
, Tio DHARMAWAN

Department of Computer Science, University of Jember, Jalan Kalimantan No. 37 Jember, East Java,
68121, Indonesia.
E-mail: helmimansur88@gmail.com; (*) nelly.oa@unej.ac.id; tio.pssi@unej.ac.id

* Author to whom correspondence should be addressed;

Received: May 25, 2023 /Accepted: June 25, 2023/ Published online: July 1, 2023

Abstract
Stroke is an acute neurologic disorder of blood vessels in the brain due to blockage of blood flow to
the brain resulting in less oxygen. Stroke remains one of the leading causes of death worldwide.
Therefore, developing Machine Learning is expected to help health professionals make early
predictions of stroke. This study aimed to compare the performance results of stroke classification
modeling using Bagging and AdaBoost methods in Machine Learning algorithms (Naïve Bayes,
Support Vector Machine, Decision Tree, and K-Nearest Neighbors) using Stroke Prediction Dataset
from Kaggle. The results show that Machine Learning algorithm that has the best performance is
Decision Tree with 91% accuracy, followed by KNN, Naïve Bayes, and finally, SVM. Optimization
of Machine Learning algorithms with Bagging and AdaBoost only increases the performance value
of the Decision Tree algorithm but does not increase the performance value of other algorithms. The
results of Decision Tree optimization with Bagging increased 1% accuracy and F1-score, as well as
4% precision in the missing value deleted scenario. Furthermore, in the missing value scenario using
mean value increases 1% F1-score and 4% precision. While the results of Decision Tree optimization
with AdaBoost increased 1% recall and F1-score in the missing value deleted scenario. Then in the
missing value scenario using mean value has the same performance as without optimization. The
application of Bagging and AdaBoost methods only increases the performance value of the Decision
Tree algorithm, but the increase is still insignificant.

Keywords: Stroke; Machine Learning (ML); Bagging; AdaBoost

Introduction

Stroke is an acute neurological dysfunction of the blood vessels in the brain caused by the
cessation of blood supply to the brain so that brain cells lack the necessary oxygen [1]. Based on the
2019 Global Burden of Disease (GBD) information, stroke remains the second leading cause of death
and the third leading cause of combined death and disability in the world [2]. Basic Health Research
data in Indonesia stated that in 2013 was 12.1 per mile of national stroke prevalence, while in 2018,
it reported a prevalence of 10.9 per mile population, with the highest values in East Kalimantan
Province (14.7 per mile) and the lowest in Papua Province (4.1 per mile) [3]. Based on its type, stroke
can be ischemic stroke or hemorrhagic stroke [4]. Ischemic stroke occurs due to blockage of blood
vessels by a thrombus or embolus, resulting in brain ischemia, while hemorrhagic stroke occurs due
to bleeding and rupture of weakened blood vessels around the brain tissue, causing intracranial
pressure [5].

http://opendefinition.org/licenses/cc-by/
mailto:helmimansur88@gmail.com
mailto:nelly.oa@unej.ac.id
mailto:tio.pssi@unej.ac.id

Optimization of Machine Learning Algorithms with Bagging and AdaBoost Methods for Stroke Disease
Prediction

[

Appl Med Inform 45(2) July/2023 71

With the development of information and communication technology in both the fields of
Artificial Intelligence (AI) and Machine Learning (ML), it is hoped that it can take an important role
in making early predictions to treat various diseases, one of which is stroke [1]. Machine learning
techniques have been widely used in multiple healthcare applications in recent years [6]. Machine
learning can be a useful step towards efficient treatment in early stroke detection and assist healthcare
professionals in making clinical decisions and predictions. Research in the last few decades, machine
learning has been used in improving stroke diagnosis in terms of accuracy and speed [5].

Sailasya and Kumari [7] compared six machine learning algorithms (Logistic Regression, Decision
Tree, Random Forest, K Nearest Neighbor, Support Vector Machine, and Naïve Bayes) and data
balancing with undersampling techniques on the stroke prediction dataset from Kaggle [8], showing
that the Naïve Bayes algorithm has the best performance with an accuracy value of 82%. Dritsas and
Trigka, reported on the Kaggle stroke dataset [8], that the results using SMOTE and the Stacking
Classification method have good results with 98% accuracy [1].

Byna and Basit conducted qualitative research using questionnaires and analyzed secondary data
from Banjarmasin Regional Hospital and showed that AdaBoost on the Naïve Bayes algorithm
provides optimization of 0.005 with an accuracy of 98.1% [9]. Another study conducted on the
Kaggle stroke dataset, without class balancing on the data, reported accuracy of classification equal
to 92.87% K-fold (K-10) cross-validation, 95.02% for the C4.5 + Bagging algorithm, and 94.63%
accuracy for the C4.5 + AdaBoost algorithm [10].

Combining different classification methods can perform better than a single prediction model and
produces accurate predictions [11]. No comparison of the Bagging and AdaBoost ensemble methods
using Machine Learning algorithms has been reported on the Kaggle stroke dataset [8]. Our research
objective was to compare the performance results of stroke classification modeling using Bagging
and AdaBoost methods so as to improve the performance and efficiency of Machine Learning
algorithms in solving certain problems. The results of this study are expected to help health experts
make decisions in predicting early stroke disease.

Material and Method

Our research was conducted at the Faculty of Computer Science, University of Jember using
Google Collaboratory on an Acer Aspire E5 421 laptop with AMD A6-6310 Processor. Figure 1
shows the research stages that became the reference for researchers in conducting research.

Figure 1. Research Stages

Data Collection

The dataset used is the Kaggle stroke dataset [8]. The database is freely available as *.csv file and
was downloaded on 10 January 2023. The dataset has 5110 total data with 12 variables, including 11
independent variables and one dependent variable (Table 1). The dependent variable of this dataset
is the variable 'stroke' with 245 samples identified as stroke and 4861 samples identified as not stroke.

Table 2 shows details related to the raw data in the top 5 rows of the dataset before preprocessing.

Helmi Saifullah MANSUR, Nelly Oktavia ADIWIJAYA, and Tio DHARMAWAN

72 Appl Med Inform 45(2) July/2023

Table 1. Variable description in the Kaggle stroke dataset

Variable Data Type Description

id int64 Unique number of each patient

gender object (Male, Female, Other) Patient gender

age float64 Patient age

hypertension int64 (1, 0)
Presence (1) or absence (0) of

hypertension

heart_disease int64 (1, 0)
Presence (1) or absence (0) of heart

disease

ever_married object (Yes, No)
Patient marital status: ever married

(Yes) vs. never married (No)

work_type
object (children, Govt_job, Never_worked,

Private, Self-employed)
Job category of each patient

residence_type object (Urban, Rural) Type of residence

avg_glucose_level float64
Average blood glucose level of each

patient

bmi float64 Body mass index

smoking_status
object (formerly smoked, never smoked,

smokes, unknown)
Smoking status

stroke int64 (1, 0)
Output column that provides the
status of whether the patient is

identified (1) or not (0) with stroke

Table 2. Raw data details of the top 5 rows of the dataset

id gender age hypertension heart_disease ever_married

9046 Male 67.0 0 1 Yes

51676 Female 61.0 0 0 Yes

31112 Male 80.0 0 1 Yes

60182 Female 49.0 0 0 Yes

1665 Female 79.0 1 0 Yes

work_type residence_type avg_glucose_level bmi smoking_status stroke

Private Urban 228.69 36.6 formerly smoked 1

Self-
employed

Rural 202.21 NaN never smoked 1

Private Rural 105.92 32.5 never smoked 1

Private Urban 171.23 34.4 smokes 1

Self-
employed

Rural 174.12 24.0 never smoked 1

Preprocessing

The preprocessing steps were carried out to clean and normalize the data. Table 3 shows the
scenario of the preprocessing steps in the research.

Table 3. The scenario of preprocessing step

Steps Treatment Description

Handling Missing Values

1. Removing missing values in the data
with dropna()

2. Fill in missing values with the mean
according to research [7,9]

Missing values in the dataset are
found in the 'bmi' column, with 201
missing values (3.93%).

Removing Unnecessary
Columns

Remove the 'id' column with the drop
function

The 'id' column is removed as it has
no impact and relationship in model
building.

Optimization of Machine Learning Algorithms with Bagging and AdaBoost Methods for Stroke Disease
Prediction

[

Appl Med Inform 45(2) July/2023 73

Steps Treatment Description

Remove the 'Other' value
in the 'Gender' column

Remove the 'Other' value with the drop
function

The value 'Other' was deleted
because there was only 1 data.

Label Encoding Data
Label encoding using the LabelEncoder()
function

The five columns that need label
encoding include 'gender',
'ever_married', 'work_type',
'residence_type', and
'smoking_status'.

In this stage, we did the following steps:
a. Handling Missing Values

Two-hundred and one values were missing in the 'bmi' (3.93%). Missing values in the 'bmi' column
are handled with 2 scenarios, which are:
1. Deleted by using the dropna() function. This needs to be done because missing values can

cause bias in data analysis and inaccurate results, so removing missing values will make the
results reliable and accurate. The amount of data after missing values are removed encounted
4909 data.

2. Using the mean value with the fillna() function. The reason for using the mean value is because
the mean describes the average value of a set of data so that it can provide general data
information. Using the mean value in handling missing values also helps in maintaining the
shape of the data distribution because the missing data is assumed to have a similar distribution
to the available data.

b. Removing Unnecessary Columns
In this research, the 'id' column is removed because the 'id' column only contains the unique
number of each patient and has no impact on model building.

b. Remove the 'Other' value in the 'Gender' column
The 'Other' value in the 'gender' column was removed. Only 1 data had this value, so the case is
contribute less. The amount of data after the 'Other' value is removed for the missing value
scenario using the mean value is 5109 data and for the missing value scenario deleted is 4908 data.

c. Label Encoding Data
At this step, categorical columns are converted into numeric columns so that the model building
process can be carried out using the LabelEncoder() function from the sklearn.preprocessing
library. Table 4 shows the details of data value changes in each categorical column.

Table 4. Details of Data Value Changes in Each Categorical Column

Categorical Columns Initial Data Value Conversion Data Value

gender
Female 0

Male 1

ever_married
Yes 0

No 1

work_type

Govt_job 0

Never_worked 1

Private 2

Self-employed 3

children 4

residence_type
Rural 0

Urban 1

smoking_status

Unknown 0

formerly smoked 1

never smoked 2

smokes 3

Handling Imbalanced Data with Synthetic Minority Oversampling Technique

The target class column in the dataset, 'stroke', shows data imbalance with 209 rows indicating
the occurrence of stroke and 4699 rows having the possibility of no stroke for the missing value

Helmi Saifullah MANSUR, Nelly Oktavia ADIWIJAYA, and Tio DHARMAWAN

74 Appl Med Inform 45(2) July/2023

deleted scenario. In the missing value scenario using the mean value also shows imbalance in the
target class data with 249 rows indicating stroke and 4860 rows having the possibility of no stroke.
Therefore, it is necessary to handle imbalanced data so that the model provides accurate results and
efficient predictions. In this research, the handling is done with the SMOTE (Synthetic Minority
Oversampling Technique) technique using the SMOTE() function from the imblearn.over_sampling
library. SMOTE applies An oversampling approach is applied to minority classes by synthesizing new
minority class samples from several adjacent minority classes [12].

Split Data

In this research, we splitting the available data into training and testing sets using k-fold cross
validation with a k-fold value of 10. K-fold cross validation is a method used to evaluate model
performance by dividing data into k equal subsets with a specified k value.

10-Fold Cross Validation means that data that has been divided into ten equal subsets will be
iterated to evaluate the model with nine subsets (90% of the data) used as training data and the
remaining one subset (10% of the data) used as testing data. This is repeated until all subsets become
testing data. The final model used in K-Fold Cross Validation is the model that has the best evaluation
score performance [22].

Building Models

Models were built with four machine-learning classification algorithms including Naïve Bayes,
Support Vector Machine, Decision Tree, and K-Nearest Neigbors. These algorithms were chosen
for comparison because they are popular types of binary classification algorithms that are widely used
and have their own characteristics and advantages in classifying data.

Each algorithm is optimized with Bagging and AdaBoost techniques to determine which
classification gives the best results so as to improve the performance and efficiency of Machine
Learning algorithms in solving problems. The model is built using the functions provided from the
sklearn library with the python language in Google Colaboratory. Table 5 shows the scenario of the
model-building stage.

Table 5. Function scenarios used in the model building step

Model Function in sklearn library Description

Naïve Bayes GaussianNB()
From the library
sklearn.naive_bayes

Support Vector Machine
(SVM)

SVC(probability=True) From the library sklearn.svm

K Nearest Neigbor (KNN) KNeighborsClassifier()
From the library
sklearn.neighbors

Decision Tree DecisionTreeClassifier() From the library sklearn.tree

Naïve Bayes + Bagging
BaggingClassifier(base_estimator =
GaussianNB(), max_sample=0.5,
max_features=0.5)

max_sample is the maximum
number of samples used to
build the model in the bagging
technique and max_features is
the number of features to be
used in each sub-model in the
bagging technique.

Support Vector Machine
(SVM) + Bagging

BaggingClassifier(base_estimator =
SVC(probability=True), max_sample=0.5,
max_features=0.5)

K Nearest Neigbor (KNN)
+ Bagging

BaggingClassifier(base_estimator =
KNeighborsClassifier(), max_sample=0.5,
max_features=0.5)

Decision Tree+ Bagging
BaggingClassifier(base_estimator =
DecisionTreeClassifier(), max_sample=0.5,
max_features=0.5)

Naïve Bayes + AdaBoost
AdaBoostClassifier(base_estimator =
GaussianNB(), n_ estimator=50)

KNN is not optimized with
AdaBoost because KNN does
not have sample weights in
sklearn. n_estimator is used to

Support Vector Machine
(SVM) + AdaBoost

AdaBoostClassifier(base_estimator =
SVC(probability=True), n_estimator=50)

Optimization of Machine Learning Algorithms with Bagging and AdaBoost Methods for Stroke Disease
Prediction

[

Appl Med Inform 45(2) July/2023 75

Decision Tree+ AdaBoost
AdaBoostClassifier(base_estimator =
DecisionTreeClassifier(), n_estimator=50)

control the number of
iterations to be performed in
the AdaBoost process.

Each model presented in Table 5 was applied to each dataset, so the calculations were done 10

times.
The Naïve Bayes algorithm assumes that the variables or attributes are independent or have no

dependence on each other [13].
In the classification process, SVM builds a model using several support vectors or data points

closest to the hyperplane to determine the dividing line [14].
K Nearest Neighbor (KNN) is a classification method that determines objects based on the

distance of the learning data that is closest to the object [15,16].
Decision Tree is a classification method that applies decision rules by partitioning large data into

smaller data sets [17,18].
Bagging is built using two main techniques: bootstrapping and aggregation by manipulating or

duplicating the training data to build bagged classifiers [19,20].
AdaBoost focuses on adding models sequentially and then the next model corrects the predictions

made by the previous model in the sequence [21].

Evaluation

Confusion matrix, accuracy, precision, recall, and F1-score were used to evaluate the algorithms.
Confusion matrix is a matrix used in evaluating the performance of a classification model by
describing the relationship between the predicted value and the actual value of a set of data. Table 6
is the calculation of the distribution of values on the confusion matrix.

Table 6. Confusion matrix

Predicted Condition

Negative Positive

Actual Condition
Negative True Negative (TN) False Positive (FP)

Positive False Negative (FN) True Positive (TP)

Accuracy is used to measure the accuracy of the algorithm in predicting the right category in the

classification or the percentage value of correct predictions from the total predictions made. The
accuracy value is obtained from Eq. 1:

Accuracy =
TP + TN

TP + FN + FP + TN
 (1)

Precision is used to measure how reliable the classification model is or the value of the number
of correct predictions out of the total number of correct and incorrect predictions made by the model.
The precision value is obtained from Eq. 2:

Precision =
TP

TP + FP
 (2)

Recall is used to measure how well the classification model captures all correct predictions or the
value of the number of correct predictions made by the model divided by the number of correct
predictions that the model should make. The recall value is obtained from Eq. 3:

Recall =
TP

TP + FN
 (3)

F1-score describes the model's overall quality using the combined value of precision and recall.
The F1-score value is obtained from Eq. 4:

Helmi Saifullah MANSUR, Nelly Oktavia ADIWIJAYA, and Tio DHARMAWAN

76 Appl Med Inform 45(2) July/2023

F1 score =
2 ∗ (Recall ∗ Precision)

Recall + Precision
 (4)

Results

Handling Imbalanced Data with Synthetic Minority Oversampling Technique

Figure 2 shows a diagram of the comparison of the amount of data in the target class.

Figure 2. Diagram of the number of data in the target class

The results after balancing the data in the target class, the values '0' and '1' have the same amount
of data and are balanced. Figure 3 shows a diagram of the comparison of the amount of data in the
target class after being handled with SMOTE.

Figure 3. Diagram of the number of data in the target class after handling with smote

Models Evaluation

The results show that the performance of the algorithm has almost the same results both with the
missing value deleted scenario and the missing value using the mean value. Table 7 and Table 8 show
the confusion matrix for each scenario.

Table 7. Confusion matrix scenario missing value deleted

Predicted Condition

With SMOTE Without SMOTE

Non Stroke Stroke Non Stroke Stroke

A c t u a l C o n d i t i o n

Naïve Bayes Non Stroke 3312 1387 4218 481

4
6

9
9

4
8

6
0

2
0

9

2
4

9

M I S S I N G V A L U E S D E L E T E D M I S S I N G V A L U E S U S I N G M E A N V A L U E S

Non Stroke (0) Stroke (1)

4
6

9
9

4
8

6
0

4
6

9
9

4
8

6
0

M I S S I N G V A L U E S D E L E T E D M I S S I N G V A L U E S U S I N G M E A N V A L U E S

Non Stroke (0) Stroke (1)

Optimization of Machine Learning Algorithms with Bagging and AdaBoost Methods for Stroke Disease
Prediction

[

Appl Med Inform 45(2) July/2023 77

Predicted Condition

With SMOTE Without SMOTE

Non Stroke Stroke Non Stroke Stroke

Stroke 940 3759 209 0

Naïve Bayes + Bagging
Non Stroke 3264 1435 4458 241

Stroke 1110 3589 209 0

Naïve Bayes + AdaBoost
Non Stroke 2054 2645 3937 762

Stroke 1421 3287 209 0

SVM
Non Stroke 3095 1604 4699 0

Stroke 1086 3613 209 0

SVM + Bagging
Non Stroke 3032 1667 4699 0

Stroke 1062 3637 209 0

SVM + AdaBoost
Non Stroke 2960 1739 4699 0

Stroke 1513 3186 209 0

KNN
Non Stroke 3730 969 4660 39

Stroke 90 4609 209 0

A
c
tu

a
l

C
o

n
d

it
io

n
 KNN + Bagging

Non Stroke 3658 1041 4699 0

Stroke 338 4361 209 0

Decision Tree
Non Stroke 4210 489 4480 219

Stroke 353 4346 209 0

Decision Tree + Bagging
Non Stroke 4409 290 4698 1

Stroke 415 4284 209 0

Decision Tree + AdaBoost
Non Stroke 4227 472 4470 229

Stroke 345 4354 209 0

Table 8. Confusion matrix when the mean value was used for of missing values

Predicted Condition

With SMOTE Without SMOTE

Non Stroke Stroke Non Stroke Stroke

A
c
tu

a
l

C
o

n
d

it
io

n

Naïve Bayes
Non Stroke 3424 1436 4350 510

Stroke 812 4048 249 0

Naïve Bayes + Bagging
Non Stroke 3338 1522 4620 240

Stroke 960 3900 249 0

Naïve Bayes + AdaBoost
Non Stroke 3256 1604 3383 1477

Stroke 2343 2517 249 0

SVM
Non Stroke 3224 1636 4860 0

Stroke 1033 3827 249 0

SVM + Bagging
Non Stroke 3168 1692 4860 0

Stroke 1021 3839 249 0

SVM + AdaBoost
Non Stroke 3621 1239 4860 0

Stroke 2291 2569 249 0

KNN
Non Stroke 3846 1014 4803 57

Stroke 106 4754 249 0

KNN + Bagging
Non Stroke 3791 1069 4860 0

Stroke 350 4510 249 0

Decision Tree
Non Stroke 4325 535 4621 239

Stroke 360 4500 249 0

Decision Tree + Bagging
Non Stroke 4512 348 4854 6

Stroke 512 4348 249 0

Decision Tree + AdaBoost
Non Stroke 4324 536 4610 250

Stroke 371 4489 249 0

Results of the distribution of actual condition values and predicted conditions in the confusion

matrix Table 7 and Table 8 have almost the same distribution value for each scenario. From these

Helmi Saifullah MANSUR, Nelly Oktavia ADIWIJAYA, and Tio DHARMAWAN

78 Appl Med Inform 45(2) July/2023

results, it is known that the confusion matrix model that does not handle imbalanced data with
SMOTE has a biased distribution which is indicated by a model that tends to predict the majority
class and misclassify the minority class. This happens because there is an unbalanced distribution in
the target class so that the model is less adequate in recognizing patterns in the minority class. From
the confusion matrix value, the model’s accuracy, precision, recall, and F1-score can then be
calculated. Table 9 and Table 10 below show the model performance results for each scenario.

Table 9. Model performance results scenario missing value deleted

Algorithm
With SMOTE Without SMOTE

Accuracy
%

Precision
%

Recall% F1-score%
Accuracy

%
Precision

%
Recall%

F1-
score%

Naïve Bayes
75 (74.1,

75.8)
73 (72.1,

73.8)
80 (79.1,

80.8)
76 (75.1,

76.8)
86 (85.3,

86.6)
0 (0, 0) 0 (0, 0) 0 (0, 0)

Naïve Bayes +
Bagging

73 (72.1,
73.8)

71 (70.0,
71.9)

76 (75.1,
76.8)

74 (73.1,
74.8)

91 (90.4,
91.5)

0 (0, 0) 0 (0, 0) 0 (0, 0)

Naïve Bayes +
AdaBoost

57 (55.9,
58.0)

55
(53.9,
56.0)

70 (69.0,
70.9)

62 (61.0,
62.9)

80 (79.2,
80.7)

0 (0, 0) 0 (0, 0) 0 (0, 0)

SVM
71 (70.0,

71.9)
69 (68.0,

69.9)
77 (76.1,

77.8)
73 (72.1,

73.8)
96 (95.6,

96.3)
0 (0, 0) 0 (0, 0) 0 (0, 0)

SVM +
Bagging

71 (70.0,
71.9)

69 (68.0,
69.9)

77 (76.1,
77.8)

73 (72.1,
73.8)

96 (95.6,
96.3)

0 (0, 0) 0 (0, 0) 0 (0, 0)

SVM +
AdaBoost

65 (64.0,
65.9)

65 (64.0,
65.9)

68 (67.0,
68.9)

67 (66.0,
67.9)

96 (95.6,
96.3)

0 (0, 0) 0 (0, 0) 0 (0, 0)

KNN
89 (88.3,

89.6)
83 (82.2,

83.7)
98 (97.7,

98.2)
90 (89.3,

90.6)
95 (94.5,

95.4)
0 (0, 0) 0 (0, 0) 0 (0, 0)

KNN +
Bagging

85 (84.2,
85.7)

81 (80.2,
81.7)

93 (92.4,
93.5)

87 (86.3,
87.6)

96 (95.6,
96.3)

0 (0, 0) 0 (0, 0) 0 (0, 0)

Decision Tree
91 (90.4,

91.5)
90 (89.3,

90.6)
92 (91.4,

92.5)
91 (90.4,

91.5)
91 (90.4,

91.5)
0 (0, 0) 0 (0, 0) 0 (0, 0)

Decision
Tree +
Bagging

92 (91.4,
92.5)

94 (93.5,
94.4)

91 (90.4,
91.5)

92 (91.4,
92.5)

96 (95.6,
96.3)

0 (0, 0) 0 (0, 0) 0 (0, 0)

Decision Tree
+ AdaBoost

91 (90.4,
91.5)

90 (89.3,
90.6)

93 (92.4,
93.5)

92 (91.4,
92.5)

91 (90.4,
91.5)

0 (0, 0) 0 (0, 0) 0 (0, 0)

Table 10. Model performance results of missing value scenario using mean value

Algorithm
With SMOTE Without SMOTE

Accuracy
%

Precision
%

Recall% F1-score%
Accuracy

%
Precision

%
Recall%

F1-
score%

Naïve Bayes
77 (76.1,

77.8)
74 (73.1,

74.8)
83 (82.2,

83.7)
75 (74.1,

75.8)
85 (84.2,

85.7)
0 (0, 0) 0 (0, 0) 0 (0, 0)

Naïve Bayes +
Bagging

75 (74.1,
75.8)

72 (71.1,
72.8)

80 (79.2,
80.7)

76 (75.1,
76.8)

90 (89.4,
90.5)

0 (0, 0) 0 (0, 0) 0 (0, 0)

Naïve Bayes +
AdaBoost

59 (58.0,
59.9)

61 (60.0,
61.9)

52 (51.0,
52.9)

56 (55.0,
56.9)

66 (65.0,
66.9)

0 (0, 0) 0 (0, 0) 0 (0, 0)

SVM
73 (72.1,

73.8)
70 (69.0,

70.9)
79 (78.1,

79.8)
74 (73.1,

74.8)
95 (94.5,

95.4)
0 (0, 0) 0 (0, 0) 0 (0, 0)

SVM +
Bagging

72 (71.1,
72.8)

69 (68.0,
69.9)

79 (78.1,
79.8)

74 (73.1,
74.8)

95 (94.5,
95.4)

0 (0, 0) 0 (0, 0) 0 (0, 0)

SVM +
AdaBoost

64 (63.0,
64.9)

67 (66.0,
67.9)

53 (52.0,
53.9)

59 (58.0,
59.9)

95 (94.5,
95.4)

0 (0, 0) 0 (0, 0) 0 (0, 0)

KNN
88 (87.3,

88.6)
82 (81.2,

82.7)
98 (97.7,

98.2)
89 (88.3,

89.6)
94 (93.5,

94.4)
0 (0, 0) 0 (0, 0) 0 (0, 0)

KNN +
Bagging

85 (84.2,
85.7)

81 (80.2,
81.7)

93 (92.4,
93.5)

87 (86.3,
87.6)

95 (94.5,
95.4)

0 (0, 0) 0 (0, 0) 0 (0, 0)

Optimization of Machine Learning Algorithms with Bagging and AdaBoost Methods for Stroke Disease
Prediction

[

Appl Med Inform 45(2) July/2023 79

Algorithm
With SMOTE Without SMOTE

Accuracy
%

Precision
%

Recall% F1-score%
Accuracy

%
Precision

%
Recall%

F1-
score%

Decision Tree
91 (90.4,

91.5)
89 (88.3,

89.6)
93 (92.4,

93.5)
91 (90.4,

91.5)
90 (89.4,

90.5)
0 (0, 0) 0 (0, 0) 0 (0, 0)

Decision
Tree +
Bagging

91 (90.4,
91.5)

93 (92.4,
93.5)

90 (89.4,
90.5)

92 (91.4,
92.5)

95 (94.5,
95.4)

0 (0, 0) 0 (0, 0) 0 (0, 0)

Decision Tree
+ AdaBoost

91 (90.4,
91.5)

89 (88.3,
89.6)

92 (91.4,
92.5)

91 (90.4,
91.5)

90 (89.4,
90.5)

0 (0, 0) 0 (0, 0) 0 (0, 0)

Discussion

The model performance results for each scenario (Table 9 and 10) show that Decision Tree
algorithm has the best performance with 91% accuracy, followed by KNN algorithm with 89%
accuracy for the missing value deleted scenario and 88% accuracy for the missing value scenario using
mean value, Naïve Bayes algorithm with 75% accuracy for missing value deleted scenario and 77%
accuracy for missing value scenario using mean value, then finally SVM algorithm with 71% accuracy
for missing value deleted scenario and 73% accuracy for missing value scenario using mean value.

Our results differ from those reported by Sailasya and Kumari [7], who handle the imbalanced
data using undersampling, with an accuracy of Naïve Bayes equal to 82% accuracy, while the lowest
performance was in the Decision Tree algorithm with 66% accuracy. The performance of our results
could be explained by the use of SMOTE in the imbalanced data, approach that balances data by
synthesizing new samples in minority classes so as not to eliminate important information and be
able to provide stronger decision results.

The results of implementing Machine Learning algorithm optimization with bagging and
AdaBoost were found to only work on the Decision Tree algorithm. Meanwhile, for KNN, Naïve
Bayes, and SVM algorithms cannot improve algorithm performance results. The results in Table 9
and 10 show that optimizing Decision Tree algorithm with Bagging can increase 1% accuracy and
F1-Score, and 4% precision for the missing value deleted scenario. Then for the missing value
scenario using the mean value can increase 1% F1-Score and 4% precision. Optimizing the Decision
Tree algorithm with AdaBoost can increase 1% recall and F1-Score for the missing value deleted
scenario. The same results as the performance without optimization were observed when the mean
was used as input data in cases of missing values.

Saputri et al. [10] showed that the combination of the C4.5 algorithm with the bagging and
AdaBoost methods could improve classification performance, but with lower values for sensitivity
and F1-score. The lower performances could be explained by the absence of imbalanced treatment.

Our results showed that the application of the bagging method for Machine Learning algorithm
optimization proved to be superior to the AdaBoost method. One of the factors that influence this
is because in bagging the models built are trained independently and in parallel so that they tend to
be more resistant to overfitting and tolerant of noise in the data. The bagging and AdaBoost methods
do have their own advantages. Therefore, this research tests these two methods to find out the results
when used for optimization by looking at the characteristics of the machine learning task at hand.

The factors that affect the optimization results of the Machine Learning algorithm with the
Bagging and AdaBoost methods are as follows:

a. Dataset characteristics and quality
Dataset characteristics and quality such as imbalanced data can affect optimization results and
model performance. In this study, it is found that the optimization results and performance of
models that are handled with SMOTE have unbiased evaluation and performance compared
to models that are not handled with imbalanced data.

b. Suitability of the algorithm used
Each algorithm has its own characteristics and limitations in solving classification problems.
In this research, it was found that the application of the Bagging method for Machine Learning

Helmi Saifullah MANSUR, Nelly Oktavia ADIWIJAYA, and Tio DHARMAWAN

80 Appl Med Inform 45(2) July/2023

algorithm optimization proved superior to the AdaBoost method.
This research has limitations such as not doing feature selection on the dataset because all existing

features are included in the factors that affect a person affected by stroke. But it is hoped that in the
next research can try to do feature selection on the dataset in order to find out the features or
attributes that have the most influence on stroke so that they can provide better results on
classification. Another limitation is that this research only uses one model to be used as a base
estimator in the bagging and AdaBoost methods, so it is hoped that the next research can try the
bbagging and AdaBoost methods with a combined base estimator from several models in order to
further optimize the classification performance results. In addition, it has been found that the
Decision Tree + Bagging model has the best performance in this study. Future research is expected
to deploy the model so that it can be applied to predict new data so that it can help health
professionals in predicting early stroke disease.

Conclusion

Decision Tree algorithm performs best, followed by KNN, Naïve Bayes, and SVM algorithms for
stroke classification modeling. Handling imbalanced data with SMOTE also makes the precision,
recall, and F1-score values better than without handling. The results of optimizing Machine Learning
algorithms with bagging and AdaBoost were found in the used dataset to only work to improve the
performance of the Decision Tree algorithm. Meanwhile, the KNN, Naïve Bayes, and SVM
algorithms cannot improve the algorithm performance results.

Optimization of Decision Tree algorithm with bagging can increase 1% accuracy and F1-Score,
and 4% precision for the missing value deleted scenario. Then for the missing value scenario using
the mean value can increase 1% F1-Score and 4% precision. The optimization of Decision Tree
algorithm with AdaBoost can increase 1% recall and F1-Score for the missing value deleted scenario.
Then for the missing value scenario using the mean value has the same results as the performance
without optimization.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

1. Dritsas E, Trigka M. Stroke Risk Prediction with Machine Learning Techniques. Sensors. 2022;
22(13):4670. doi:10.3390/s22134670

2. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World Stroke
Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke. 2022;17(1):18–29.
doi:10.1007/s10554-020-02099-7

3. Kementerian Kesehatan Republik Indonesia. Laporan Riskesdas 2018 Nasional [Internet]. 2019
[cited 2023 Jan 17]. p. 674. Available from:
https://kesmas.kemkes.go.id/assets/upload/dir_519d41d8cd98f00/files/Hasil-riskesdas-
2018_1274.pdf

4. Kokkotis C, Giarmatzis G, Giannakou E, Moustakidis S, Tsatalas T, Tsiptsios D, et al. An
Explainable Machine Learning Pipeline for Stroke Prediction on Imbalanced Data. Diagnostics.
2022; 12(10):2392. doi:10.3390/diagnostics12102392

5. Sirsat MS, Fermé E, Câmara J. Machine Learning for Brain Stroke: A Review. J Stroke
Cerebrovasc Dis. 2020;29(10):105162. doi: 10.1016/j.jstrokecerebrovasdis.2020.105162

6. Chun M, Clarke R, Cairns BJ, Clifton D, Bennett D, Chen Y, et al. Stroke risk prediction using
machine learning: A prospective cohort study of 0.5 million Chinese adults. J Am Med
Informatics Assoc. 2021;28(8):1719–1727.

7. Sailasya G, Kumari GLA. Analyzing the Performance of Stroke Prediction using ML
Classification Algorithms. Int J Adv Comput Sci Appl. 2021;12(6):539–545.

Optimization of Machine Learning Algorithms with Bagging and AdaBoost Methods for Stroke Disease
Prediction

[

Appl Med Inform 45(2) July/2023 81

8. Fedesoriano. Stroke Prediction Dataset [Internet]. Kaggle; 2020. Available from:
https://www.kaggle.com/fedesoriano/stroke-prediction-dataset

9. Byna A, Basit M. Penerapan Metode Adaboost Untuk Mengoptimasi Prediksi Penyakit Stroke
Dengan Algoritma Naïve Bayes. J Sisfokom (Sistem Inf dan Komputer). 2020;9(3):407–411.

10. Saputri ND, Khalid K, Rolliawati D. Komparasi Penerapan Metode Bagging dan Adaboost pada
Algoritma C4 . 5 untuk Prediksi Penyakit Stroke. 2022;11(September):567–577.

11. Jothi Prakash V, Karthikeyan NK. Enhanced Evolutionary Feature Selection and Ensemble
Method for Cardiovascular Disease Prediction. Interdiscip Sci – Comput Life Sci [Internet].
2021;13(3):389–412. doi:10.1007/s12539-021-00430-x

12. Saifudin A. Level Data Dan Algoritma Untuk Penanganan Ketidakseimbangan Kelas [Internet].
Pascal Books; 2022. Available from: https://books.google.co.id/books?id=MG6dEAAAQBAJ

13. Arhami M, Nasir M. Data Mining - Algoritma dan Implementasi [Internet]. 1st ed. Penerbit Andi;
2020. 226 p. Available from: https://books.google.co.id/books?id=AtcCEAAAQBAJ

14. Sianturi FA, Hasugian PM, Simangunsong A, Nadeak B, Sihotang HT. DATA MINING: Teori
dan Aplikasi Weka [Internet]. IOCS Publisher; 2019. 200 p. (Edisi). Available from:
https://books.google.co.id/books?id=MWcHEAAAQBAJ

15. Id ID. Machine Learning : Teori, Studi Kasus dan Implementasi Menggunakan Python [Internet].
Unri Press; 2021. 210 p. Available from:
https://books.google.co.id/books?id=JvBPEAAAQBAJ

16. Hidayah U, Sifaunajah A. Cara Mudah Memahami Algoritma K-Nearest Neighbor Studi Kasus
Visual Basic 6.0 [Internet]. Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas
KH. A. Wahab Hasbullah; 2019. Available from: https://books.google.co.id/books?id=B6t-
EAAAQBAJ

17. Nofriansyah D. Konsep Data Mining Vs Sistem Pendukung Keputusan [Internet]. Yogyakarta:
Deepublish; 2015. 120 p. Available from:
https://books.google.co.id/books?id=PoJyCAAAQBAJ

18. Kusrini, Luthfi ET. Algoritma Data Mining [Internet]. 1st ed. Prabawati TA, editor. Yogyakarta:
Penerbit Andi; 2009. 216 p. Available from: https://books.google.co.id/books?id=-
Ojclag73O8C

19. Fitriyani. Metode Bagging Untuk Imbalance Class Pada Bedah Toraks Menggunakan Naïve
Bayes. 2018;18(3):270–282.

20. Ridwan A, Khoiriyah AT. Penerapan Teknik Bagging Pada Algoritma Naive Bayes Dan
Algoritma C4.5 Untuk Mengatasi Ketidakseimbangan Kelas. J Bisnis Digit dan Sist Inf.
2020;1:41–48.

21. Brownlee J. Ensemble Learning Algorithms With Python: Make Better Predictions with Bagging,
Boosting, and Stacking [Internet]. Machine Learning Mastery; 2021. 450 p. Available from:
https://books.google.co.id/books?id=IUkrEAAAQBAJ

22. Widyaningsih Y, Arum GP, Prawira K. Aplikasi K-Fold Cross Validation Dalam Penentuan
Model Regresi Binomial Negatif Terbaik. BAREKENG: Jurnal Ilmu Matematika dan Terapan.
2021 Jun 1;15(2):315-22.Available from: https://doi.org/10.30598/barekengvol15iss2pp315-
322

