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Abstract 
Stroke is an acute neurologic disorder of blood vessels in the brain due to blockage of blood flow to 
the brain resulting in less oxygen. Stroke remains one of the leading causes of death worldwide. 
Therefore, developing Machine Learning is expected to help health professionals make early 
predictions of stroke. This study aimed to compare the performance results of stroke classification 
modeling using Bagging and AdaBoost methods in Machine Learning algorithms (Naïve Bayes, 
Support Vector Machine, Decision Tree, and K-Nearest Neighbors) using Stroke Prediction Dataset 
from Kaggle. The results show that Machine Learning algorithm that has the best performance is 
Decision Tree with 91% accuracy, followed by KNN, Naïve Bayes, and finally, SVM. Optimization 
of Machine Learning algorithms with Bagging and AdaBoost only increases the performance value 
of the Decision Tree algorithm but does not increase the performance value of other algorithms. The 
results of Decision Tree optimization with Bagging increased 1% accuracy and F1-score, as well as 
4% precision in the missing value deleted scenario. Furthermore, in the missing value scenario using 
mean value increases 1% F1-score and 4% precision. While the results of Decision Tree optimization 
with AdaBoost increased 1% recall and F1-score in the missing value deleted scenario. Then in the 
missing value scenario using mean value has the same performance as without optimization. The  
application of Bagging and AdaBoost methods only increases the performance value of the Decision 
Tree algorithm, but the increase is still insignificant. 
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Introduction 

Stroke is an acute neurological dysfunction of the blood vessels in the brain caused by the 
cessation of blood supply to the brain so that brain cells lack the necessary oxygen [1]. Based on the 
2019 Global Burden of Disease (GBD) information, stroke remains the second leading cause of death 
and the third leading cause of combined death and disability in the world [2]. Basic Health Research 
data in Indonesia stated that in 2013 was 12.1 per mile of national stroke prevalence, while in 2018, 
it reported a prevalence of 10.9 per mile population, with the highest values in East Kalimantan 
Province (14.7 per mile) and the lowest in Papua Province (4.1 per mile) [3]. Based on its type, stroke 
can be ischemic stroke or hemorrhagic stroke [4]. Ischemic stroke occurs due to blockage of blood 
vessels by a thrombus or embolus, resulting in brain ischemia, while hemorrhagic stroke occurs due 
to bleeding and rupture of weakened blood vessels around the brain tissue, causing intracranial 
pressure [5]. 
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With the development of information and communication technology in both the fields of 
Artificial Intelligence (AI) and Machine Learning (ML), it is hoped that it can take an important role 
in making early predictions to treat various diseases, one of which is stroke [1]. Machine learning 
techniques have been widely used in multiple healthcare applications in recent years [6]. Machine 
learning can be a useful step towards efficient treatment in early stroke detection and assist healthcare 
professionals in making clinical decisions and predictions. Research in the last few decades, machine 
learning has been used in improving stroke diagnosis in terms of accuracy and speed [5]. 

Sailasya and Kumari [7] compared six machine learning algorithms (Logistic Regression, Decision 
Tree, Random Forest, K Nearest Neighbor, Support Vector Machine, and Naïve Bayes) and data 
balancing with undersampling techniques on the stroke prediction dataset from Kaggle [8], showing 
that the Naïve Bayes algorithm has the best performance with an accuracy value of 82%. Dritsas and 
Trigka, reported on the Kaggle stroke dataset [8], that the results using SMOTE and the Stacking 
Classification method have good results with 98% accuracy [1]. 

Byna and Basit conducted qualitative research using questionnaires and analyzed secondary data 
from Banjarmasin Regional Hospital and showed that AdaBoost on the Naïve Bayes algorithm 
provides optimization of 0.005 with an accuracy of 98.1% [9]. Another study conducted on the 
Kaggle stroke dataset, without class balancing on the data, reported accuracy of classification equal 
to 92.87% K-fold (K-10) cross-validation, 95.02% for the C4.5 + Bagging algorithm, and 94.63% 
accuracy for the C4.5 + AdaBoost algorithm [10]. 

Combining different classification methods can perform better than a single prediction model and 
produces accurate predictions [11]. No comparison of the Bagging and AdaBoost ensemble methods 
using Machine Learning algorithms has been reported on the Kaggle stroke dataset [8]. Our research 
objective was to compare the performance results of stroke classification modeling using Bagging 
and AdaBoost methods so as to improve the performance and efficiency of Machine Learning 
algorithms in solving certain problems. The results of this study are expected to help health experts 
make decisions in predicting early stroke disease. 

Material and Method 

Our research was conducted at the Faculty of Computer Science, University of Jember using 
Google Collaboratory on an Acer Aspire E5 421 laptop with AMD A6-6310 Processor. Figure 1 
shows the research stages that became the reference for researchers in conducting research. 

 

Figure 1. Research Stages 

Data Collection 

The dataset used is the Kaggle stroke dataset [8]. The database is freely available as *.csv file and 
was downloaded on 10 January 2023. The dataset has 5110 total data with 12 variables, including 11 
independent variables and one dependent variable (Table 1). The dependent variable of this dataset 
is the variable 'stroke' with 245 samples identified as stroke and 4861 samples identified as not stroke. 

Table 2 shows details related to the raw data in the top 5 rows of the dataset before preprocessing. 
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Table 1. Variable description in the Kaggle stroke dataset 

Variable Data Type Description 

id int64 Unique number of each patient 

gender object (Male, Female, Other) Patient gender 

age float64 Patient age 

hypertension int64 (1, 0) 
Presence (1) or absence (0) of 

hypertension 

heart_disease int64 (1, 0) 
Presence (1) or absence (0) of heart 

disease 

ever_married object (Yes, No) 
Patient marital status: ever married 

(Yes) vs. never married (No) 

work_type 
object (children, Govt_job, Never_worked, 

Private, Self-employed) 
Job category of each patient 

residence_type object (Urban, Rural) Type of residence 

avg_glucose_level float64 
Average blood glucose level of each 

patient 

bmi float64 Body mass index 

smoking_status 
object (formerly smoked, never smoked, 

smokes, unknown) 
Smoking status 

stroke int64 (1, 0) 
Output column that provides the 
status of whether the patient is 

identified (1) or not (0) with stroke 

Table 2. Raw data details of the top 5 rows of the dataset 

id gender age hypertension heart_disease ever_married 

9046 Male 67.0 0 1 Yes 

51676 Female 61.0 0 0 Yes 

31112 Male 80.0 0 1 Yes 

60182 Female 49.0 0 0 Yes 

1665 Female 79.0 1 0 Yes 

work_type residence_type avg_glucose_level bmi smoking_status stroke 

Private Urban 228.69 36.6 formerly smoked 1 

Self-
employed 

Rural 202.21 NaN never smoked 1 

Private Rural 105.92 32.5 never smoked 1 

Private Urban 171.23 34.4 smokes 1 

Self-
employed 

Rural 174.12 24.0 never smoked 1 

Preprocessing 

The preprocessing steps were carried out to clean and normalize the data. Table 3 shows the 
scenario of the preprocessing steps in the research. 

Table 3. The scenario of preprocessing step 

Steps Treatment Description 

Handling Missing Values 

1. Removing missing values in the data 
with dropna() 

2. Fill in missing values with the mean 
according to research [7,9] 

Missing values in the dataset are 
found in the 'bmi' column, with 201 
missing values (3.93%). 

Removing Unnecessary 
Columns 

Remove the 'id' column with the drop 
function 

The 'id' column is removed as it has 
no impact and relationship in model 
building. 
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Steps Treatment Description 

Remove the 'Other' value 
in the 'Gender' column 

Remove the 'Other' value with the drop 
function 

The value 'Other' was deleted 
because there was only 1 data. 

Label Encoding Data 
Label encoding using the LabelEncoder() 
function 

The five columns that need label 
encoding include 'gender', 
'ever_married', 'work_type', 
'residence_type', and 
'smoking_status'. 

In this stage, we did the following steps: 
a. Handling Missing Values  

Two-hundred and one values were missing in the 'bmi' (3.93%). Missing values in the 'bmi' column 
are handled with 2 scenarios, which are: 
1. Deleted by using the dropna() function. This needs to be done because missing values can 

cause bias in data analysis and inaccurate results, so removing missing values will make the 
results reliable and accurate. The amount of data after missing values are removed encounted 
4909 data. 

2. Using the mean value with the fillna() function. The reason for using the mean value is because 
the mean describes the average value of a set of data so that it can provide general data 
information. Using the mean value in handling missing values also helps in maintaining the 
shape of the data distribution because the missing data is assumed to have a similar distribution 
to the available data. 

b. Removing Unnecessary Columns 
In this research, the 'id' column is removed because the 'id' column only contains the unique 
number of each patient and has no impact on model building. 

b. Remove the 'Other' value in the 'Gender' column 
The 'Other' value in the 'gender' column was removed. Only 1 data had this value, so the case is 
contribute less. The amount of data after the 'Other' value is removed for the missing value 
scenario using the mean value is 5109 data and for the missing value scenario deleted is 4908 data. 

c. Label Encoding Data 
At this step, categorical columns are converted into numeric columns so that the model building 
process can be carried out using the LabelEncoder() function from the sklearn.preprocessing 
library. Table 4 shows the details of data value changes in each categorical column. 

Table 4. Details of Data Value Changes in Each Categorical Column 

Categorical Columns Initial Data Value Conversion Data Value 

gender 
Female 0 

Male 1 

ever_married 
Yes 0 

No 1 

work_type 

Govt_job 0 

Never_worked 1 

Private 2 

Self-employed 3 

children 4 

residence_type 
Rural 0 

Urban 1 

smoking_status 

Unknown 0 

formerly smoked 1 

never smoked 2 

smokes 3 

Handling Imbalanced Data with Synthetic Minority Oversampling Technique  

The target class column in the dataset, 'stroke', shows data imbalance with 209 rows indicating 
the occurrence of stroke and 4699 rows having the possibility of no stroke for the missing value 
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deleted scenario. In the missing value scenario using the mean value also shows imbalance in the 
target class data with 249 rows indicating stroke and 4860 rows having the possibility of no stroke. 
Therefore, it is necessary to handle imbalanced data so that the model provides accurate results and 
efficient predictions. In this research, the handling is done with the SMOTE (Synthetic Minority 
Oversampling Technique) technique using the SMOTE() function from the imblearn.over_sampling 
library. SMOTE applies An oversampling approach is applied to minority classes by synthesizing new 
minority class samples from several adjacent minority classes [12]. 

Split Data 

In this research, we splitting the available data into training and testing sets using k-fold cross 
validation with a k-fold value of 10. K-fold cross validation is a method used to evaluate model 
performance by dividing data into k equal subsets with a specified k value. 

10-Fold Cross Validation means that data that has been divided into ten equal subsets will be 
iterated to evaluate the model with nine subsets (90% of the data) used as training data and the 
remaining one subset (10% of the data) used as testing data. This is repeated until all subsets become 
testing data. The final model used in K-Fold Cross Validation is the model that has the best evaluation 
score performance [22]. 

Building Models 

Models were built with four machine-learning classification algorithms including Naïve Bayes, 
Support Vector Machine, Decision Tree, and K-Nearest Neigbors. These algorithms were chosen 
for comparison because they are popular types of binary classification algorithms that are widely used 
and have their own characteristics and advantages in classifying data.  

Each algorithm is optimized with Bagging and AdaBoost techniques to determine which 
classification gives the best results so as to improve the performance and efficiency of Machine 
Learning algorithms in solving problems. The model is built using the functions provided from the 
sklearn library with the python language in Google Colaboratory. Table 5 shows the scenario of the 
model-building stage. 

Table 5. Function scenarios used in the model building step 

Model Function in sklearn library Description 

Naïve Bayes GaussianNB() 
From the library 
sklearn.naive_bayes 

Support Vector Machine 
(SVM) 

SVC(probability=True) From the library sklearn.svm 

K Nearest Neigbor (KNN) KNeighborsClassifier() 
From the library 
sklearn.neighbors 

Decision Tree DecisionTreeClassifier() From the library sklearn.tree 

Naïve Bayes + Bagging 
BaggingClassifier(base_estimator = 
GaussianNB(), max_sample=0.5, 
max_features=0.5) 

max_sample is the maximum 
number of samples used to 
build the model in the bagging 
technique and max_features is 
the number of features to be 
used in each sub-model in the 
bagging technique. 

Support Vector Machine 
(SVM) + Bagging 

BaggingClassifier(base_estimator = 
SVC(probability=True), max_sample=0.5, 
max_features=0.5) 

K Nearest Neigbor (KNN) 
+ Bagging 

BaggingClassifier(base_estimator = 
KNeighborsClassifier(), max_sample=0.5, 
max_features=0.5) 

Decision Tree+ Bagging 
BaggingClassifier(base_estimator = 
DecisionTreeClassifier(), max_sample=0.5, 
max_features=0.5) 

Naïve Bayes + AdaBoost 
AdaBoostClassifier(base_estimator = 
GaussianNB(), n_ estimator=50) 

KNN is not optimized with 
AdaBoost because KNN does 
not have sample weights in 
sklearn. n_estimator is used to 

Support Vector Machine 
(SVM) + AdaBoost 

AdaBoostClassifier(base_estimator = 
SVC(probability=True), n_estimator=50) 
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Decision Tree+ AdaBoost 
AdaBoostClassifier(base_estimator = 
DecisionTreeClassifier(), n_estimator=50) 

control the number of 
iterations to be performed in 
the AdaBoost process. 

 
Each model presented in Table 5 was applied to each dataset, so the calculations were done 10 

times. 
The Naïve Bayes algorithm assumes that the variables or attributes are independent or have no 

dependence on each other [13]. 
In the classification process, SVM builds a model using several support vectors or data points 

closest to the hyperplane to determine the dividing line [14].  
K Nearest Neighbor (KNN) is a classification method that determines objects based on the 

distance of the learning data that is closest to the object [15,16]. 
Decision Tree is a classification method that applies decision rules by partitioning large data into 

smaller data sets [17,18]. 
Bagging is built using two main techniques: bootstrapping and aggregation by manipulating or 

duplicating the training data to build bagged classifiers [19,20].  
AdaBoost focuses on adding models sequentially and then the next model corrects the predictions 

made by the previous model in the sequence [21]. 

Evaluation 

Confusion matrix, accuracy, precision, recall, and F1-score were used to evaluate the algorithms. 
Confusion matrix is a matrix used in evaluating the performance of a classification model by 
describing the relationship between the predicted value and the actual value of a set of data. Table 6 
is the calculation of the distribution of values on the confusion matrix. 

Table 6. Confusion matrix 

 
Predicted Condition 

Negative Positive 

Actual Condition 
Negative True Negative (TN) False Positive (FP) 

Positive False Negative (FN) True Positive (TP) 

 
Accuracy is used to measure the accuracy of the algorithm in predicting the right category in the 

classification or the percentage value of correct predictions from the total predictions made. The 
accuracy value is obtained from Eq. 1: 

Accuracy =  
TP + TN

TP + FN + FP + TN
 (1)  

Precision is used to measure how reliable the classification model is or the value of the number 
of correct predictions out of the total number of correct and incorrect predictions made by the model. 
The precision value is obtained from Eq. 2: 

Precision =  
TP

TP + FP
 (2)  

Recall is used to measure how well the classification model captures all correct predictions or the 
value of the number of correct predictions made by the model divided by the number of correct 
predictions that the model should make. The recall value is obtained from Eq. 3: 

Recall =  
TP

TP + FN
 (3)  

F1-score describes the model's overall quality using the combined value of precision and recall. 
The F1-score value is obtained from Eq. 4: 
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F1 score =  
2 ∗ (Recall ∗ Precision)

Recall + Precision
 (4)  

Results 

Handling Imbalanced Data with Synthetic Minority Oversampling Technique  

Figure 2 shows a diagram of the comparison of the amount of data in the target class. 

 

Figure 2. Diagram of the number of data in the target class 

The results after balancing the data in the target class, the values '0' and '1' have the same amount 
of data and are balanced. Figure 3 shows a diagram of the comparison of the amount of data in the 
target class after being handled with SMOTE. 

 

Figure 3. Diagram of the number of data in the target class after handling with smote 

Models Evaluation 

The results show that the performance of the algorithm has almost the same results both with the 
missing value deleted scenario and the missing value using the mean value. Table 7 and Table 8 show 
the confusion matrix for each scenario. 

Table 7. Confusion matrix scenario missing value deleted 

 

Predicted Condition 

With SMOTE Without SMOTE 

Non Stroke Stroke Non Stroke Stroke 

A c t u a l C o n d i t i o n
 

Naïve Bayes Non Stroke 3312 1387 4218 481 
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Predicted Condition 

With SMOTE Without SMOTE 

Non Stroke Stroke Non Stroke Stroke 

Stroke 940 3759 209 0 

Naïve Bayes + Bagging 
Non Stroke 3264 1435 4458 241 

Stroke 1110 3589 209 0 

Naïve Bayes + AdaBoost 
Non Stroke 2054 2645 3937 762 

Stroke 1421 3287 209 0 

SVM 
Non Stroke 3095 1604 4699 0 

Stroke 1086 3613 209 0 

SVM + Bagging 
Non Stroke 3032 1667 4699 0 

Stroke 1062 3637 209 0 

SVM + AdaBoost 
Non Stroke 2960 1739 4699 0 

Stroke 1513 3186 209 0 

KNN 
Non Stroke 3730 969 4660 39 

Stroke 90 4609 209 0 

A
c
tu

a
l 

C
o

n
d

it
io

n
 KNN + Bagging 

Non Stroke 3658 1041 4699 0 

Stroke 338 4361 209 0 

Decision Tree 
Non Stroke 4210 489 4480 219 

Stroke 353 4346 209 0 

Decision Tree + Bagging 
Non Stroke 4409 290 4698 1 

Stroke 415 4284 209 0 

Decision Tree + AdaBoost 
Non Stroke 4227 472 4470 229 

Stroke 345 4354 209 0 

Table 8. Confusion matrix when the mean value was used for of missing values 

 

Predicted Condition 

With SMOTE Without SMOTE 

Non Stroke Stroke Non Stroke Stroke 

A
c
tu

a
l 

C
o

n
d

it
io

n
 

Naïve Bayes 
Non Stroke 3424 1436 4350 510 

Stroke 812 4048 249 0 

Naïve Bayes + Bagging 
Non Stroke 3338 1522 4620 240 

Stroke 960 3900 249 0 

Naïve Bayes + AdaBoost 
Non Stroke 3256 1604 3383 1477 

Stroke 2343 2517 249 0 

SVM 
Non Stroke 3224 1636 4860 0 

Stroke 1033 3827 249 0 

SVM + Bagging 
Non Stroke 3168 1692 4860 0 

Stroke 1021 3839 249 0 

SVM + AdaBoost 
Non Stroke 3621 1239 4860 0 

Stroke 2291 2569 249 0 

KNN 
Non Stroke 3846 1014 4803 57 

Stroke 106 4754 249 0 

KNN + Bagging 
Non Stroke 3791 1069 4860 0 

Stroke 350 4510 249 0 

Decision Tree 
Non Stroke 4325 535 4621 239 

Stroke 360 4500 249 0 

Decision Tree + Bagging 
Non Stroke 4512 348 4854 6 

Stroke 512 4348 249 0 

Decision Tree + AdaBoost 
Non Stroke 4324 536 4610 250 

Stroke 371 4489 249 0 

 
 
Results of the distribution of actual condition values and predicted conditions in the confusion 

matrix Table 7 and Table 8 have almost the same distribution value for each scenario. From these 
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results, it is known that the confusion matrix model that does not handle imbalanced data with 
SMOTE has a biased distribution which is indicated by a model that tends to predict the majority 
class and misclassify the minority class. This happens because there is an unbalanced distribution in 
the target class so that the model is less adequate in recognizing patterns in the minority class. From 
the confusion matrix value, the model’s accuracy, precision, recall, and F1-score can then be 
calculated. Table 9 and Table 10 below show the model performance results for each scenario. 

Table 9. Model performance results scenario missing value deleted 

Algorithm 
With SMOTE Without SMOTE 

Accuracy
% 

Precision
% 

Recall% F1-score% 
Accuracy

% 
Precision

% 
Recall% 

F1-
score% 

Naïve Bayes 
75 (74.1, 

75.8) 
73 (72.1, 

73.8) 
80 (79.1, 

80.8) 
76 (75.1, 

76.8) 
86 (85.3, 

86.6) 
0 (0, 0) 0 (0, 0) 0 (0, 0) 

Naïve Bayes + 
Bagging 

73 (72.1, 
73.8) 

71 (70.0, 
71.9)  

76 (75.1, 
76.8) 

74 (73.1, 
74.8) 

91 (90.4, 
91.5) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 

Naïve Bayes + 
AdaBoost 

57 (55.9, 
58.0) 

55  
(53.9, 
56.0) 

70 (69.0, 
70.9) 

62 (61.0, 
62.9) 

80 (79.2, 
80.7) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 

SVM 
71 (70.0, 

71.9) 
69 (68.0, 

69.9) 
77 (76.1, 

77.8) 
73 (72.1, 

73.8) 
96 (95.6, 

96.3) 
0 (0, 0) 0 (0, 0) 0 (0, 0) 

SVM + 
Bagging 

71 (70.0, 
71.9) 

69 (68.0, 
69.9) 

77 (76.1, 
77.8) 

73 (72.1, 
73.8) 

96 (95.6, 
96.3) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 

SVM + 
AdaBoost 

65 (64.0, 
65.9) 

65 (64.0, 
65.9) 

68 (67.0, 
68.9) 

67 (66.0, 
67.9) 

96 (95.6, 
96.3) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 

KNN 
89 (88.3, 

89.6) 
83 (82.2, 

83.7) 
98 (97.7, 

98.2) 
90 (89.3, 

90.6) 
95 (94.5, 

95.4) 
0 (0, 0) 0 (0, 0) 0 (0, 0) 

KNN + 
Bagging 

85 (84.2, 
85.7) 

81 (80.2, 
81.7) 

93 (92.4, 
93.5) 

87 (86.3, 
87.6) 

96 (95.6, 
96.3) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 

Decision Tree 
91 (90.4, 

91.5) 
90 (89.3, 

90.6) 
92 (91.4, 

92.5) 
91 (90.4, 

91.5) 
91 (90.4, 

91.5) 
0 (0, 0) 0 (0, 0) 0 (0, 0) 

Decision 
Tree + 
Bagging 

92 (91.4, 
92.5) 

94 (93.5, 
94.4) 

91 (90.4, 
91.5) 

92 (91.4, 
92.5) 

96 (95.6, 
96.3) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 

Decision Tree 
+ AdaBoost 

91 (90.4, 
91.5) 

90 (89.3, 
90.6) 

93 (92.4, 
93.5) 

92 (91.4, 
92.5) 

91 (90.4, 
91.5) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 

Table 10. Model performance results of missing value scenario using mean value 

Algorithm 
With SMOTE Without SMOTE 

Accuracy
% 

Precision
% 

Recall% F1-score% 
Accuracy

% 
Precision

% 
Recall% 

F1-
score% 

Naïve Bayes 
77 (76.1, 

77.8) 
74 (73.1, 

74.8) 
83 (82.2, 

83.7) 
75 (74.1, 

75.8) 
85 (84.2, 

85.7) 
0 (0, 0) 0 (0, 0) 0 (0, 0) 

Naïve Bayes + 
Bagging 

75 (74.1, 
75.8) 

72 (71.1, 
72.8) 

80 (79.2, 
80.7) 

76 (75.1, 
76.8) 

90 (89.4, 
90.5) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 

Naïve Bayes + 
AdaBoost 

59 (58.0, 
59.9) 

61 (60.0, 
61.9) 

52 (51.0, 
52.9) 

56 (55.0, 
56.9) 

66 (65.0, 
66.9) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 

SVM 
73 (72.1, 

73.8) 
70 (69.0, 

70.9) 
79 (78.1, 

79.8) 
74 (73.1, 

74.8) 
95 (94.5, 

95.4) 
0 (0, 0) 0 (0, 0) 0 (0, 0) 

SVM + 
Bagging 

72 (71.1, 
72.8) 

69 (68.0, 
69.9) 

79 (78.1, 
79.8) 

74 (73.1, 
74.8) 

95 (94.5, 
95.4) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 

SVM + 
AdaBoost 

64 (63.0, 
64.9) 

67 (66.0, 
67.9) 

53 (52.0, 
53.9) 

59 (58.0, 
59.9) 

95 (94.5, 
95.4) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 

KNN 
88 (87.3, 

88.6) 
82 (81.2, 

82.7) 
98 (97.7, 

98.2) 
89 (88.3, 

89.6) 
94 (93.5, 

94.4) 
0 (0, 0) 0 (0, 0) 0 (0, 0) 

KNN + 
Bagging 

85 (84.2, 
85.7) 

81 (80.2, 
81.7) 

93 (92.4, 
93.5) 

87 (86.3, 
87.6) 

95 (94.5, 
95.4) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 
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Algorithm 
With SMOTE Without SMOTE 

Accuracy
% 

Precision
% 

Recall% F1-score% 
Accuracy

% 
Precision

% 
Recall% 

F1-
score% 

Decision Tree 
91 (90.4, 

91.5) 
89 (88.3, 

89.6) 
93 (92.4, 

93.5) 
91 (90.4, 

91.5) 
90 (89.4, 

90.5) 
0 (0, 0) 0 (0, 0) 0 (0, 0) 

Decision 
Tree + 
Bagging 

91 (90.4, 
91.5) 

93 (92.4, 
93.5) 

90 (89.4, 
90.5) 

92 (91.4, 
92.5) 

95 (94.5, 
95.4) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 

Decision Tree 
+ AdaBoost 

91 (90.4, 
91.5) 

89 (88.3, 
89.6) 

92 (91.4, 
92.5) 

91 (90.4, 
91.5) 

90 (89.4, 
90.5) 

0 (0, 0) 0 (0, 0) 0 (0, 0) 

Discussion 

The model performance results for each scenario (Table 9 and 10) show that Decision Tree 
algorithm has the best performance with 91% accuracy, followed by KNN algorithm with 89% 
accuracy for the missing value deleted scenario and 88% accuracy for the missing value scenario using 
mean value, Naïve Bayes algorithm with 75% accuracy for missing value deleted scenario and 77% 
accuracy for missing value scenario using mean value, then finally SVM algorithm with 71% accuracy 
for missing value deleted scenario and 73% accuracy for missing value scenario using mean value. 

Our results differ from those reported by Sailasya and Kumari [7], who handle the imbalanced 
data using undersampling, with an accuracy of Naïve Bayes equal to 82% accuracy, while the lowest 
performance was in the Decision Tree algorithm with 66% accuracy. The performance of our results 
could be explained by the use of SMOTE in the imbalanced data, approach that balances data by 
synthesizing new samples in minority classes so as not to eliminate important information and be 
able to provide stronger decision results. 

The results of implementing Machine Learning algorithm optimization with bagging and 
AdaBoost were found to only work on the Decision Tree algorithm. Meanwhile, for KNN, Naïve 
Bayes, and SVM algorithms cannot improve algorithm performance results. The results in Table 9 
and 10 show that optimizing Decision Tree algorithm with Bagging can increase 1% accuracy and 
F1-Score, and 4% precision for the missing value deleted scenario. Then for the missing value 
scenario using the mean value can increase 1% F1-Score and 4% precision. Optimizing the Decision 
Tree algorithm with AdaBoost can increase 1% recall and F1-Score for the missing value deleted 
scenario. The same results as the performance without optimization were observed when the mean 
was used as input data in cases of missing values. 

Saputri et al. [10] showed that the combination of the C4.5 algorithm with the bagging and 
AdaBoost methods could improve classification performance, but with lower values for sensitivity 
and F1-score. The lower performances could be explained by the absence of imbalanced treatment. 

Our results showed that the application of the bagging method for Machine Learning algorithm 
optimization proved to be superior to the AdaBoost method. One of the factors that influence this 
is because in bagging the models built are trained independently and in parallel so that they tend to 
be more resistant to overfitting and tolerant of noise in the data. The bagging and AdaBoost methods 
do have their own advantages. Therefore, this research tests these two methods to find out the results 
when used for optimization by looking at the characteristics of the machine learning task at hand.  

The factors that affect the optimization results of the Machine Learning algorithm with the 
Bagging and AdaBoost methods are as follows: 

a. Dataset characteristics and quality 
Dataset characteristics and quality such as imbalanced data can affect optimization results and 
model performance. In this study, it is found that the optimization results and performance of 
models that are handled with SMOTE have unbiased evaluation and performance compared 
to models that are not handled with imbalanced data. 

b. Suitability of the algorithm used 
Each algorithm has its own characteristics and limitations in solving classification problems. 
In this research, it was found that the application of the Bagging method for Machine Learning 
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algorithm optimization proved superior to the AdaBoost method. 
This research has limitations such as not doing feature selection on the dataset because all existing 

features are included in the factors that affect a person affected by stroke. But it is hoped that in the 
next research can try to do feature selection on the dataset in order to find out the features or 
attributes that have the most influence on stroke so that they can provide better results on 
classification. Another limitation is that this research only uses one model to be used as a base 
estimator in the bagging and AdaBoost methods, so it is hoped that the next research can try the 
bbagging and AdaBoost methods with a combined base estimator from several models in order to 
further optimize the classification performance results. In addition, it has been found that the 
Decision Tree + Bagging model has the best performance in this study. Future research is expected 
to deploy the model so that it can be applied to predict new data so that it can help health 
professionals in predicting early stroke disease. 

Conclusion 

Decision Tree algorithm performs best, followed by KNN, Naïve Bayes, and SVM algorithms for 
stroke classification modeling. Handling imbalanced data with SMOTE also makes the precision, 
recall, and F1-score values better than without handling. The results of optimizing Machine Learning 
algorithms with bagging and AdaBoost were found in the used dataset to only work to improve the 
performance of the Decision Tree algorithm. Meanwhile, the KNN, Naïve Bayes, and SVM 
algorithms cannot improve the algorithm performance results. 

Optimization of Decision Tree algorithm with bagging can increase 1% accuracy and F1-Score, 
and 4% precision for the missing value deleted scenario. Then for the missing value scenario using 
the mean value can increase 1% F1-Score and 4% precision. The optimization of Decision Tree 
algorithm with AdaBoost can increase 1% recall and F1-Score for the missing value deleted scenario. 
Then for the missing value scenario using the mean value has the same results as the performance 
without optimization.  
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