
 Applied Medical Informatics 

Original Research Vol. 43, No. 3/2021, pp: 91- 102 
 

  
91 

[ 

Interpretable Machine Learning Model Selection for Breast 
Cancer Diagnosis Based on K-means Clustering 

Dieudonne N. OUEDRAOGO* 

Binghamton University, Department of System Science and Industrial Engineering, State University 
of New York 4400 Vestal Pkwy E, Binghamton, NY 13902, USA. 
E-mail: douedra1@binghamton.edu 

* Author to whom correspondence should be addressed; Tel.: +1 646-342-7841  

Received: June 14, 2021/Accepted: September 19, 2021/ Published online: October 1, 2021 

Abstract 
Background: Breast cancer affects millions of women; with the increasing growth in data collection 
in recent years, machine learning models are used in the diagnosis phase. While the accuracy of the 
models plays a significant role in choosing a model, the interpretability of the model for doctors and 
decision-makers is crucial in understanding and building trust in breast cancer diagnosis. In practice, 
it is challenging for researchers and practitioners to select the optimal model based on multiple 
objectives such as accuracy, interpretability, and computation runtime. We proposed a model 
selection technique unifying various objectives based on K-means clustering. This study's main 
contribution is the use of interpretable machine learning techniques such as LIME, ELI5, and SHAP 
and machine learning algorithms to predict the tumor type. Materials and Methods: The data used 
in this study were collected by Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian from 
the University of Wisconsin Hospitals, and donated to the UCI machine learning repository by Nick 
Street. Forty-three models are built using the dataset. The runtime for each model is recorded in 
seconds, and the Accuracy, Balanced Accuracy, the AUC-ROC, the F1-score, and the interpretability 
tool are compiled. A K-means clustering algorithm is applied to the resulting outputs. Through the 
elbow method, three categories of clusters are selected. Results: The proposed method showed high 
performance, as well as ease in interpreting the model. The K-means clusters' characteristics show 
that models in cluster number 2 have low and medium interpretability and low computation runtime. 
Conclusion: AdaBoost and XGBoost Classifiers with ELI5 interpretability are the most performant 
and most explainable models. They show the highest accuracy and the lowest computation runtime, 
and each prediction is explained by a linear combination of the top features. 

Keywords: Breast cancer diagnosis; Interpretable machine learning; Interpretability; Explainability; 
Model selection; K-means clustering 

Introduction 

Machine learning (ML) and artificial intelligence (AI) are sets of applications, tools, and processes 
used to learn patterns from data sets and make predictions and decisions without being explicitly 
programmed [1]. The predictions are based on a finalized model and selected amount to a large 
number of others. Choosing a model based on a single objective such as accuracy is relatively easy; a 
selection based on multiple goals such as interpretability and usage of computing resources is 
challenging. Black-box models [2], such as neural networks, ensemble boosting, and stacked models, 
are widely used to improve accuracy, but a new challenge arises in the form of trust. Modeling in 
healthcare domains such as breast cancer diagnosis often carries multiple objectives; models need to 
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be explainable and trustable for doctors and decision-makers. Lundberg [3] and Ribeiro [4] highlight 
those challenges in their articles and propose interpretability tools such as SHAP (SHapley Additive 
exPlanations), LIME (Local Interpretable Model-Agnostic Explanations), and ELI5 (Explain Like 
I'm 5) for black-box models. The goal of using those techniques is to understand the prediction made 
by the black-box model in terms of the initial input variables. 

Interpretability 

Machine learning interpretation and explanation are crucial to ensure no bias in the modeling 
process; it provides trust and transparency. The lack of model transparency and the inability to 
understand large and complex models lead to trust issues in Machine Learning and Artificial 
Intelligence systems. Deep learning and neural network models, gradient boosting, and random forest 
algorithms are widely used in breast cancer diagnosis. The predictions with those models have shown 
excellent results [5-7]; however, the lack of understanding of the rules behind those predictions 
generates trust issues. Ribeiro [8], through their article, explained the importance of using 
interpretable models and interpretability tools on building trust. When a model's prediction can be 
decomposed into a combination of the model input variables, it changes the black-box model into a 
transparent model. It improves trust in the predictions being made. Interpretability [9] is currently a 
hot topic as many healthcare domains require accurate and explainable models; Doshi [10] described 
a scenario where interpretability is needed and pointed to fairness, trust, and reliability are the main 
reasons for using interpretability. Deep learning models' interpretation techniques are scarce due to 
the complexity of deep neural networks and the number of parameter features used. For the 
interpretability of Convolution Neural Networks (CNN) models, Bau [11] proposed using a Network 
Dissection attribution of latent representations by estimating the alignment between hidden units and 
the semantic concepts. Many systems, such as image classifiers, operate on low-level features rather 
than high-level concepts. The Concept Activation Vectors (CAVs) are introduced to address these 
challenges, where the neural net's internal state is interpreted in terms of human-friendly concepts.  

• SHAP: The most widely used interpretation technique is SHAP which stands for SHapley 
Additive exPlanation. SHAP was proposed by Lundberg [3] and defined as a unified approach 
for interpretability; it is a technique of attribution of feature importance based on Shapley game 
theory developed by Shapley [12] to interpret and explain complex machine learning models. 
However, SHAP's general framework is slow and often not usable for deep learning models; 
gradient-based algorithms often replace SHAP for deep learning models.  

• LIME: Ribeiro [6] proposed using model-agnostic techniques to interpret machine learning 
predictions. All models are treated as black-box, which generates flexibility in choosing models, 
interpretations, and representations, that improve the debugging, comparison, and interfaces for 
various techniques. There are many challenges in building such a framework as outlined by 
Ribeiro [6]; to mitigate those challenges, they introduced LIME, a model-agnostic explanation 
technique.  

• ELI5: ELI5, often called ELI, is a local explanation approach built on the same principle as 
LIME, which approximates the complex model locally to a linear model where the output is 
similar to regression with coefficients and bias. 

We proposed a model selection technique unifying multiple objectives performance metrics, 
computation runtime, and interpretability based on K-means clustering. This study's main 
contribution is the use of interpretable machine learning techniques such as LIME, ELI5, and SHAP 
and machine learning algorithms to predict and explain the tumor type. 

Material and Method 

Dataset 

The dataset is the breast cancer data from the UC Irvine Machine Learning Repository it is used 
to illustrate the process. The data was collected in the University of Wisconsin Hospitals, Madison 
Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian, and donated to the UCI machine 
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learning repository by Nick Street [15-17]. The data has 569 instances; two Classes, 212 - malignant, 
357 – benign, and 30 columns comprised of the following attributes: Radius, which is the mean of 
distances from the center to the points on the perimeter; Texture, which represents the standard 
deviation of the gray-scale values; Smoothness, that defines the local variation in radius lengths; Area; 
Perimeter; Compactness defines as the Perimeter2/Area - 1.0; Concavity, which expresses the severity 
of concave portions of the contour; Concave points, the number of concave portions of the contour; 
Symmetry; Fractal dimension, which is defined as the coastline approximation – 1. There are 30 
features since each image has a mean, a standard error, and a worst/largest (mean of the three 
worst/largest values) computed. For instance, field 0 is Mean Radius; field 10 is Radius SE, field 20 
is Worst Radius. All the features are numeric, and the dataset contains no missing values. 

The data set is unbalanced, two Classes, 212 - Malignant, 357 – Benign, as depicted in Figure 1. 

 

Figure 1. The distribution of data based on classes 

Modeling Phase 

The dataset was stratified split into 75 percent for training and 25 percent for testing to assess the 
performance of each model. The stratification goal was to ensure that the percentage of benign and 
malignant cases remained the same in training and testing sets. All 30 features of the dataset were 
used in building the models. 

The algorithms, classifiers, and models implemented in this study include a broad set of commonly 
used techniques by data scientists found in the Scikit-learn python package to simulated the variate 
of choices often faces by modelers. The methods considered are: AdaBoost [18], Adaptive Boosting 
proposed by Yoav Freund and Robert Schapire that won the 2003 Gödel Prize, an ensemble of 
decision trees (weak learners) where their outputs are weithed sum to get the final output of a strong 
learner (the final boosted output); CatBoost [19], Categorical Boosting a machine learning technique 
based on gradient boosting on decision trees; XGBoost [20] which stands for eXtreme Gradient 
Boosting, an optimized gradient boosting method that allow boosting to be implemented in parallel 
in order to improve speed; Random Forest [21] a frequently used ML method that use bagging 
techniques over decision trees, the method was proposed  by Leo Breiman and Adele Cutler; 
LightGBM [22] an alogrithm widely used by data scientists and developed by Microsoft based on 
distributed gratient boosting techniques; Linear Discriminant Analysis [23], Support Vector Machine 
[24], Stochastic Gradient Classifier [25], the Perceptron [26], Quadratic Discriminant Analysis [27], 
Logistic Regression [28], Label Propagation [29], Label Spreading [30], Ridge Classifier CV [31], Ridge 
Classifier [32], Extremely Randomized Trees (Extra Trees Classifier) [33], Passive Aggressive 
Classifier [34-35], Linear SVC [36], Calibrated Classifier CV [37], K-Nearest Neighbors [38], Bagging 
Classifier [39], Bernoulli NB [40], Nu SVC [41], Nearest Centroid [42], Gaussian NB [43], Decision 
Tree [44]. Python and Scikit-learn [45] are used in this study. All models were built using the training 
dataset, and the performance metrics were assessed on the test set. 



Dieudonne N. OUEDRAOGO 
 

94 Appl Med Inform 43(3) September/2021 
 

Performance 

The performance metrics used in this study are Accuracy, Balanced-Accuracy, AUC-ROC, F1-score, 
the computation runtime.  

A breast cancer diagnosis is a binary classification with benign as a Negative class and malignant as 
a Positive class. There are four basic combinations in a binary classification of actual data category 
and assigned category: true positives - TP (correct positive assignments), true negatives - TN (correct 
negative assignments), false positives - FP (incorrect positive assignments), and false negatives - FN 
(incorrect negative assignments). Furthermore, True Positive Rate TPR is defined as TP/(TP+FN) and 
referred to as sensitivity or recall, while True Negative Rate TNR is defined as TN/(TN+FP) is named 
specificity.  

The Accuracy or Fraction Correct (FC) measures the fraction of all instances that are correctly 
categorized. 

We also compute the Balanced-Accuracy for unbalance datasets such as breast cancer data as the 
average recall obtained on each class. Balanced-Accuracy = (TPR+TNR)/2 

ROC, known as the Receiver Operating Characteristic curve, is a plot of the performance of a 
classifier at all thresholds. It represents the TPR versus the FPR at all possible classification 
thresholds. AUC-ROC, the Area Under the ROC curve, measures the surface underneath under the 
ROC curve. The AUC-ROC is the probability that the classifier ranks a random positive sample more 
highly than a random negative one; a higher value indicates a better classifier. 

F1-score often called balanced F-score, and F-measure is the harmonic mean of the Precision and 
the Recall:  

F1-score = 2(Precision*Recall)/(Precision + Recall) 
where: Precision is TP/(TP+FP), and Recall is TP/(TP+FN) 

K-Means Clustering 

K-means clustering [13] is a vector quantization method that divides the dataset's M observations 
and N features into K clusters to minimize the sum of squares of the within-cluster distances. This 
study uses the algorithm to find natural groups of models to be chosen based on the Accuracy, Balanced-
Accuracy, ROC-AUC, F1-score, the runtime, and the Interpretability technique. The number of clusters is 
determined by using the elbow method [14]. 

The elbow method consists of running successive K-means clustering on the dataset for 
incremental K values and then computing the sum of squared distances from each point to its 
assigned cluster center. The total sum of squared distances, referred to as explained variance, is plotted 
against the number of clusters, and the elbow of the curve is used to define the number of clusters. 

K-means Silhouette Score 

The clustering performance is assessed by computing the average silhouette coefficient [45] for 
the entire dataset. The mathematical expression of the silhouette score is  (b-a)/max (a, b); where a 
represents the mean of the intra-cluster distances and b the distance between the data point and the 
closest cluster that the data point is not belonging. Values are between -1 and 1. The perfect silhouette 
score being 1. Values around zero indicate overlapping clusters, while negative implies that the 
datapoint belongs to the wrong group. 

Results 

Models Performance Metrics and Interpretability Tools  

The performance metrics and the interpretability tools used are compiled in Table 1. In white-
box models, such as Logistic Regression, there is no need for an external interpretability tool. The 
interpretability is referred to as ITSELF as the model explains itself. Table 1 shows the results 
obtained by using each model ID. 
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Table 1. Models performance metrics and Interpretability tools  

Model ID Accuracy 
Balanced 
Accuracy 

AUC 
ROC 

F1 
Score 

Run 
Time 

Inter-
pretability 

AdaBoost Classifier 0.979021 0.979455 0.979455 0.979060 0.232496 SHAP 

CatBoost Classifier 0.979021 0.979455 0.979455 0.979060 7.602528 SHAP 

XGBoost Classifier 0.979021 0.975577 0.975577 0.978979 0.173537 SHAP 

Random Forest Classifier 0.972028 0.973899 0.973899 0.972130 0.174532 SHAP 

LightGBM Classifier 0.972028 0.966143 0.966143 0.971913 0.158578 SHAP 

Linear Discriminant Analysis 0.972028 0.962264 0.962264 0.971784 0.041888 ITSELF 

Support Vector Classifier 0.965035 0.960587 0.960587 0.964965 0.012964 ITSELF 

Stochatic Gradient Classifier 0.965035 0.960587 0.960587 0.964965 0.008975 ITSELF 

Perceptron 0.965035 0.960587 0.960587 0.964965 0.010971 ITSELF 

Quadratic Discriminant Analysis 0.958042 0.958910 0.958910 0.958195 0.011968 ITSELF 

Logistic Regression 0.958042 0.955031 0.955031 0.958042 0.017953 ITSELF 

Label Propagation 0.958042 0.955031 0.955031 0.958042 0.026802 ITSELF 

Label Spreading 0.958042 0.955031 0.955031 0.958042 0.024933 ITSELF 

Ridge Classifier CV 0.965035 0.952830 0.952830 0.964642 0.011969 ITSELF 

Ridge Classifier 0.965035 0.952830 0.952830 0.964642 0.015958 ITSELF 

Extra Trees Classifier 0.951049 0.945597 0.945597 0.950951 0.099735 SHAP 

Passive Aggressive Classifier 0.944056 0.943920 0.943920 0.944260 0.011968 ITSELF 

Linear Support Vector Calssifier 0.944056 0.943920 0.943920 0.944260 0.012965 ITSELF 

Calibrated Classifier CV 0.958042 0.943396 0.943396 0.957460 0.030918 ITSELF 

Extra Tree Classifier 0.937063 0.942243 0.942243 0.937581 0.008975 SHAP 

K Nearest Neighbors Classifier 0.951049 0.937841 0.937841 0.950499 0.016955 ITSELF 

Bagging Classifier 0.930070 0.936688 0.936688 0.930737 0.048868 SHAP 

Bernoulli Naive Bayes 0.930070 0.932809 0.932809 0.930547 0.017946 ITSELF 

Nu Support Vector Classifier 0.944056 0.932285 0.932285 0.943567 0.023936 ITSELF 

Nearest Centroid 0.937063 0.926730 0.926730 0.936662 0.010971 ITSELF 

Gaussian Naive Bayes 0.916084 0.910063 0.910063 0.916084 0.008977 ITSELF 

Decision Tree Classifier 0.895105 0.905031 0.905031 0.896449 0.011968 ITSELF 

AdaBoost Classifier 0.979021 0.979455 0.979455 0.979060 0.232496 ELI 

CatBoost Classifier 0.979021 0.979455 0.979455 0.979060 7.602528 ELI 

XGBoost Classifier 0.979021 0.975577 0.975577 0.978979 0.173537 ELI 

Random Forest Classifier 0.972028 0.973899 0.973899 0.972130 0.174532 ELI 

LightGBM Classifier 0.972028 0.966143 0.966143 0.971913 0.158578 ELI 

Extra Trees Classifier 0.951049 0.945597 0.945597 0.950951 0.099735 ELI 

Extra Tree Classifier 0.937063 0.942243 0.942243 0.937581 0.008975 ELI 

Bagging Classifier 0.930070 0.936688 0.936688 0.930737 0.048868 ELI 

AdaBoost Classifier 0.979021 0.979455 0.979455 0.979060 0.232496 LIME 

CatBoost Classifier 0.979021 0.979455 0.979455 0.979060 7.602528 LIME 

XGBoost Classifier 0.979021 0.975577 0.975577 0.978979 0.173537 LIME 

Random Forest Classifier 0.972028 0.973899 0.973899 0.972130 0.174532 LIME 

LightGBM lassifier 0.972028 0.966143 0.966143 0.971913 0.158578 LIME 

Extra Trees Classifier 0.951049 0.945597 0.945597 0.950951 0.099735 LIME 

Extra Tree Classifier 0.937063 0.942243 0.942243 0.937581 0.008975 LIME 

Bagging Classifier 0.930070 0.936688 0.936688 0.930737 0.048868 LIME 
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Interpretability Based on SHAP 

Figure 2. shows the output of the XGBoost model using SHAP as an interpretability tool. 
 

 

Figure 2. Interpretation of breast cancer prediction using SHAP with XGBoost algorithm 

Interpretability Based on LIME 

LIME, known as Local Interpretable Model-agnostic Explanation, is a surrogate diagnostic 
interpretability technique. LIME takes the surroundings and fits a basic interpretable linear model for 
a particular data point in the feature space. Figure 3 depicts the interpretability of LIME on the 
XGboost model predictions 

 

Figure 3. Interpretation of  breast cancer  prediction using LIME 

Interpretability Based on ELI5 

ELI5 (ELI) is also a surrogate modeling technique used to debug machine learning classifiers and 
explain their top prediction via an easy-to-understand and good-visual way. However, it is not a 
complete model-agnostic explanations technique, mainly tree-based and other parametric linear 
models can only be used. The prediction is displayed as the sum of the top features plus a bias term. 
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Figure 4. Interpretation of  breast cancer  prediction using ELI 

The Optimal Number of Clusters from the Elbow Method 

The optimum number of clusters is 3; it is determined through the elbow method, as depicted in 
Figure 5 - the plot shows the sum of squared distances versus the number of clusters. The value at 
K = 3 represents the elbow of the curve, which is the optimum number of clusters. 

 

Figure 5. Sum of squared distances versus the number of clusters 

The obtained silhouette score is 0.756, meaning good clustering performance 

Clustering Outputs 

Using the K-means clustering, we infer three types of model clusters, 0, 1, and 2. K is obtained 
through the elbow method using the above data. A closer look at those clusters' characteristics shows 
that models in cluster number 2 have low and medium interpretability and low computation. 
AdaBoost Classifier, XGBoost Classifier with ELI interpretability are the most performant and easily 
explainable modeling techniques for this diagnosis. The complete results are in Table 2. The 
clustering results show models falling into three clusters, 1, 2, or 3.  
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Table 2. K-means clustering  of Breast Cancer Data Classification models 

Model ID Accuracy 
Balanced 
Accuracy 

AUC 
ROC 

F1  

Score 

Run 
Time 

Inter-
pretability 

Model 
Cluster 

AdaBoost Classifier 0.979021 0.979455 0.979455 0.979060 0.232496 SHAP 1 

CatBoost Classifier 0.979021 0.979455 0.979455 0.979060 7.602528 SHAP 2 

XGBoost Classifier 0.979021 0.975577 0.975577 0.978979 0.173537 SHAP 1 

AdaBoost Classifier 0.979021 0.979455 0.979455 0.979060 0.232496 ELI 3 

CatBoost Classifier 0.979021 0.979455 0.979455 0.979060 7.602528 ELI 2 

XGBoost Classifier 0.979021 0.975577 0.975577 0.978979 0.173537 ELI 3 

AdaBoost Classifier 0.979021 0.979455 0.979455 0.979060 0.232496 LIME 1 

CatBoost Classifier 0.979021 0.979455 0.979455 0.979060 7.602528 LIME 2 

XGBoost Classifier 0.979021 0.975577 0.975577 0.978979 0.173537 LIME 1 

Random Forest Classifier 0.972028 0.973899 0.973899 0.972130 0.174532 SHAP 1 

LightGBM Classifier 0.972028 0.966143 0.966143 0.971913 0.158578 SHAP 1 

Linear Discriminant Analysis 0.972028 0.962264 0.962264 0.971784 0.041888 ITSELF 3 

Random Forest Classifier 0.972028 0.973899 0.973899 0.972130 0.174532 ELI 3 

LighGBM Classifier 0.972028 0.966143 0.966143 0.971913 0.158578 ELI 3 

Random Forest Classifier 0.972028 0.973899 0.973899 0.972130 0.174532 LIME 1 

LightGBM Classifier 0.972028 0.966143 0.966143 0.971913 0.158578 LIME 1 

Support Vector Classifier 0.965035 0.960587 0.960587 0.964965 0.012964 ITSELF 3 

Stochastic Gradient Classifier 0.965035 0.960587 0.960587 0.964965 0.008975 ITSELF 3 

Perceptron 0.965035 0.960587 0.960587 0.964965 0.010971 ITSELF 3 

Ridge Classifier CV 0.965035 0.952830 0.952830 0.964642 0.011969 ITSELF 3 

Ridge Classifier 0.965035 0.952830 0.952830 0.964642 0.015958 ITSELF 3 

Quadratic Discriminant Analysis 0.958042 0.958910 0.958910 0.958195 0.011968 ITSELF 3 

Logistic Regression 0.958042 0.955031 0.955031 0.958042 0.017953 ITSELF 3 

Label Propagation 0.958042 0.955031 0.955031 0.958042 0.026802 ITSELF 3 

Label Spreading 0.958042 0.955031 0.955031 0.958042 0.024933 ITSELF 3 

Calibrated ClassifierCV 0.958042 0.943396 0.943396 0.957460 0.030918 ITSELF 3 

Extra Trees Classifier 0.951049 0.945597 0.945597 0.950951 0.099735 SHAP 1 

K Nearest Neighbors Classifier 0.951049 0.937841 0.937841 0.950499 0.016955 ITSELF 3 

Extra Trees Classifier 0.951049 0.945597 0.945597 0.950951 0.099735 ELI 3 

Extra Trees Classifier 0.951049 0.945597 0.945597 0.950951 0.099735 LIME 1 

Passive Aggressive Classifier 0.944056 0.943920 0.943920 0.944260 0.011968 ITSELF 3 

Linear SVC 0.944056 0.943920 0.943920 0.944260 0.012965 ITSELF 3 

Nu SVC 0.944056 0.932285 0.932285 0.943567 0.023936 ITSELF 3 

Extra Tree Classifier 0.937063 0.942243 0.942243 0.937581 0.008975 SHAP 1 

Nearest Centroid 0.937063 0.926730 0.926730 0.936662 0.010971 ITSELF 3 

Extra Tree Classifier 0.937063 0.942243 0.942243 0.937581 0.008975 ELI 2 

Extra Tree Classifier 0.937063 0.942243 0.942243 0.937581 0.008975 LIME 1 

Bagging Classifier 0.930070 0.936688 0.936688 0.930737 0.048868 SHAP 1 

Bernoulli Naive Bayes 0.930070 0.932809 0.932809 0.930547 0.017946 ITSELF 3 

Bagging Classifier 0.930070 0.936688 0.936688 0.930737 0.048868 ELI 3 

Bagging Classifier 0.930070 0.936688 0.936688 0.930737 0.048868 LIME 1 

Gaussian Naive Bayes 0.916084 0.910063 0.910063 0.916084 0.008977 ITSELF 3 

Decision Tree Classifier 0.895105 0.905031 0.905031 0.896449 0.011968 ITSELF 3 
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Cluster 1 shows low computation runtime models while cluster 2 is the opposite; it offers high 
computation models. Cluster 3 depicts models with low runtime and self-explainable or relatively 
easy to explain interpretability tools. 

Validation of Methodology 

The technique described in this study assigns a cluster label to each model. Another XGBoost 
model is used to assess the validity of the labeling where the models' performance metrics represent 
the features, and the cluster categories represent the target (output). The XGBoost's model accuracy 
on a test set estimates the consistency of this labeling technique. The clustered dataset is randomly 
split into the train and test 80 and 20; the input variables represent the models' metrics. The target 
variable is the Cluster category. The distribution of clusters categories is shown in Figure 6. The 
accuracy on the test set points to perfect results 100%, as depicted in Figure 7 

 

Figure 6. Test set's distribution of Clusters' categories 

 
Figure 7. Confusion Matrix of Xgboost performance on the test set (Accuracy = 100%) 

Discussion 

The results show that a model can be chosen based on multiple criteria. While in the literature, 
many studies on Breast cancer diagnosis using machine learning focus on getting more accurate 
models based on a single criterion such as Accuracy [46] or F1-score, or AUC-ROC values; this study 
focuses on multiple criteria. In breast cancer diagnosis, accuracy is essential, and the prediction's 
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explanation is also crucial. While we have used a particular dataset here and selected criteria, the 
technique applies to any dataset. 

This study clearly shows distinct clusters; making sense of those clusters can become challenging 
when the number of constraints grows and could be a limitation of this proposed method. For a 
relatively low number of criteria or objectives, less effort is needed to characterize those clusters. In 
practice, decision-makers and modelers value fewer constraints, so the technique is beneficial. Using 
the K-Means clustering on this data is well justified as the average silhouette score and the elbow 
method output support it; however, it does not prevent the usage of other clustering techniques. 
Future studies should expand into using different clustering techniques. This technique could be 
perceived as a labeling technique. Essentially, it assigns a label that defines the cluster category of 
using a particular model. If the labeling is consistent, it must be learnable in terms of machine learning. 
A sophisticated machine learning algorithm such as XGBoost can be used to assess the technique. 
The models' performance metrics represent the features, and the cluster categories represent the 
target (output). The XGBoost's model accuracy on a test set estimates the consistency of this labeling 
technique. The final results dataset is split into train and test 80 and 20, respectively. The input 
variables represent the models' metrics. The target variable is the Cluster category—the accuracy on 
the test set point to perfect results 100%. 

The K-means clusters' characteristics show that models in cluster number 2 have low and medium 
interpretability and low computation runtime. AdaBoost and XGBoost Classifiers with ELI5 
interpretability are the most performant and most explainable models.  

The proposed method shows a model could be selected based on multiple objectives by clustering 
the objectives. Those objectives could be numerical such as Accuracy, F1-score, Balance -Accuracy, 
or AUC-ROC. The objective could also be categorical such as the interpretability technique used on 
the model. This flexibility makes the method valuable and applicable to many domains where in 
practice, a single criterium is not enough to validate the selection of a machine learning model. 
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NB= Naive Bayes 
AUC = Area Under Curve 
ROC = Receiver Operating Curve 
CV = Cross-Validation  
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SVC = Support Vector Classifier 
CNN = Convolution Neural Network 
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