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Abstract 
Background: In every moment of life, the brain processes a lot of combinations of several sounds. This 
processing includes stream separation and attended selection, among others. Recent studies show 
that listener’s attention could be decoded by analyzing electroencephalography (EEG). Method: In 
this research, a new method for classifying EEG signals is introduced when 40 subjects were asked 
to listen to two concurrent speech signals and attend to one of them in a dichotic scenario. The 
mismatch negativity (MMN) component, as one of the important evoked related potentials (ERPs), 
plays a crucial role during the attentional process which can be extracted by the non-negative Tucker 
decomposition method. Then, linear and nonlinear features are extracted. Most of these features are 
significant according to the analysis of variance (ANOVA) test. Finally, a combination of selected 
significant features is employed to train and test the convolutional neural network (CNN) classifier. 
The proposed auditory attention detection method is compared with the three recent and common 
methods as the baseline systems. Results: The proposed method detects the attended speaker by MMN 
with a classification accuracy of 98.21%. To introduce a practical application of the proposed method, 
six near-ear electrodes are selected to detect attended speech. The classification performance equal 
to 71.75% shows that using only these electrodes in hearing-aids could be a promising strategy in 
detecting attentional behavior. Comparison with Existing Methods: Comparing to three conventional 
auditory attention detection methods, we find that the proposed approach shows higher accuracy 
with MMN as input data. Conclusion: The results open a new perspective to design neural-based brain-
computer interfaces (BCI) using selective auditory attention. 

Keywords: Selective Attention; Mismatch Negativity; Electroencephalography (EEG); Tensor 
Decomposition; Feature Extraction; Convolution Neural Network 

Introduction 

One of the human abilities is attending a specific speaker in a multi-talker scenario, such as a 
cocktail party. It is yet unclear what happens in the brain to facilitate the attentional process and 
separate a specific voice or sound. Attention is a cognitive process and plays a salient role in the 
vision and auditory perception, helping the human concentrate on specific objects of the 
environment while discarding others.  

Auditory scene analysis (ASA) is a basic auditory cortex's ability, which allows us to detect and 
understand sound events in an acoustic environment [1]. When listening to a person in a cocktail 
party or searching for one musical instrument such as a violin in a symphonic orchestra, we depend 
on our ear’s exceptional ability to analyze complex acoustic scenes into auditory streams of target and 
interferences [2]. It is known that the auditory scene analysis (ASA) mechanism is achieved based on 
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two types of auditory processing: 1) bottom-up attention, often driven by salient differences between 
target and background, and 2) a top-down cognitive attention, driven by prior knowledge [3]; 
although it is a challenge to model these types of information processing mathematically [4]. The 
investigation of auditory selective attention was introduced first by Cherry [5]. Since then, other 
researchers have presented several dichotic [6] and binaural [7] methods to inspect the mechanism of 
the auditory attention detection (AAD) in real adverse conditions [8]. There are numerous 
applications regarding AAD modeling in ASA. Some studies have shown the use of auditory attention 
methods in the brain-computer interface (BCI) systems [9, 10] and robotics [11]. Other applications 
concern the use of AAD to control other devices, such as sound recording devices [12]. As a golden 
aim, the notion of AAD can also be employed in a neuro-steered hearing prosthesis, where the device 
can amplify the attended speech of a hearing-impaired (HI) subject placed in a competitive talker 
scenario. 

The auditory attention process takes place on the level of the sensory cortex in the brain [13] and 
influences several biological activities, including facial expression, eye movement, and especially many 
interconnected neural networks [14]. This process can be tracked by recording brain activities [15], 
using electroencephalography (EEG), functional magnetic resonance imaging (fMRI), and 
magnetoencephalography (MEG). Among all these techniques, fMRI and MEG have some 
limitations, such as low temporal resolution, portability, and price, making them very impractical [16]. 
However, due to its accessibility and applicability in real-time measurements, EEG has been 
considered an interesting tool in cognitive neuroscience studies [17].  

External or internal stimuli create a particular type of EEG signal is known as event-related 
potentials (ERPs) [18]. It is known that ERPs reveal the neural activation in the primary sensory 
cortex and its associative cortical regions, which are related to higher levels of cognitive processes. 
Their analysis includes the computation of the amplitude, latency, scalp topographic distribution, 
polarity (positive/negative peaks), and time course, which helps to understand human psychological 
behavior, specifically auditory attention [19]. Usually, the early ERP components (e.g., P100, N100, 
and P200) are related to the selective attentional mechanism, whereas the late components such as 
P300 are often associated with formation and interpretation of the stimulus [20]. Among these 
components, it has been proved that the mismatch negativity (MMN), known also as small ERP, 
occurs in response to auditory attention stimuli [21] (see Figure 1). This type of ERP appears when 
repetitive standard auditory stimuli are occasionally interspersed with deviant stimuli, which are 
audibly different from the standards [21]. 

 

Figure 1. An example of event-related potentials and its components (adapted from [28]) 

Various methods have been developed in the recent decade to detect selective auditory attention. 
In one of these methods, a forward mapping from the amplitude envelopes of speech signals to EEG 
signals was created. Here, the aim was to estimate a function that characterizes the way stimuli are 
mapped onto neural responses. The attentional state of a listener could then be deducted from the 
estimated EEG signals [22]. Miran et al. [23] proposed a real-time method based on Bayesian filtering. 
However, the system's classification accuracy to the attended and unattended speaker was near to 
previous works [22] with little performance improvement. Other researchers reconstructed attend 
and unattended speech in a dichotic listening scenario in the low-frequency range (1-8 Hz) by the 



Masoud GERAVANCHIZADEH, Sahar ZAKERI 
 

26 Appl Med Inform 43(1) March/2021 
 

EEG signals [24, 25]. In this frequency range, EEG corresponds to the spectrum of speech envelope. 
Here, the subject’s attention is detected based on the correlation between the reconstructed speech 
envelope and the actual attended and unattended speech envelopes of the two ears, a process called 
backward mapping. The reconstructed envelope is obtained by using a decoder which is a function 
that maps the electrode's responses to the speech stimuli [26, 27]. 

In similar research, Aroudi and Doclo [29] investigated the potential of using mixture signals 
instead of clean speech signals, as reference signals, to decode auditory attention in near realistic (i.e., 
anechoic, reverberant, noisy, and reverberant noisy) conditions. 

Another method in detecting attention concentrated on the extracted informative features from 
EEG. Machine learning techniques classify the extracted features corresponding to the attended 
and unattended speakers. Haghighi et al. [28] calculated the cross-correlation coefficients between 
EEGs and target/distractor acoustic envelopes at different time lags to classify attended and 
unattended speech in offline mode. Furthermore, they employed principle coefficient analysis 
(PCA) to reduce feature dimensions and regularized discriminant analysis (RDA) as the classifier. 
In another study, online EEGs recorded by mobile were utilized to compute the P300 component, 
which was then used to detect auditory attention in a dual speaker scenario [30]. In this approach, 
the fast classification with a supervised and cross-validation linear discriminant analysis (LDA) 
achieves an accuracy near 80% for all experimental conditions.  

Few studies focused on employing powers of EEG bands and some auditory ERPs measures 
(i.e., N1, P1, and P2) in the training of classifiers [31] to detect selective attention. The template 
matching classification technique achieved near 70% accuracy [31] with all three ERP components 
or the single N1 component when listeners were involved in a visual task. Wang et al. [32] examined 
EEG signals from healthy subjects during a dual attention task. Their distraction-detection model 
was based on independent component analysis (ICA). This research's classification performance 
using support vector machines (SVM) gained an accuracy of ~ 85% in real-time. Based on a new 
protocol to record the EEG signals, EEG was decomposed to its subbands (i.e., delta, theta, alpha, 
beta, and gamma) to classify attention and non-attention states in educational environments [33]]. 
The results showed that the best effective features were related to the beta band and the energy of 
the signals in a mathematical operation task. It was also verified that the c-SVM (i.e., SVM classifier 
type 1) and LDA classifiers had higher performance in attention detection than other methods with 
92% accuracy. Using the empirical decomposition technique (EMD), Looney et al. [34] estimated 
selective attention features by modeling the degree of the gamma-band synchronization between 
attended stimuli and neural activity in EEG with 71% accuracy. Lu et al. [35] extracted four types 
of entropy (i.e., approximate entropy, sample entropy, composite multi-scale entropy, and fuzzy 
entropy) as informative features of EEGs to classify three kinds of tasks, namely, rest and two 
different auditory objects attention. They obtained an identification accuracy of ~ 80% among the 
tasks with the LDA and SVM classifiers. 

It is clear that the first two AAD methods (i.e., forward and backward mapping) require 
specifically “clean” speech to compute the correlation between stimuli envelopes and EEG data; a 
situation which never happens in realistic acoustic environments, especially in a cocktail party 
condition. It has also been indicated that the accuracy of decoders depends on temporal resolution 
or the trial length of stimuli (e.g., shorter trial lengths such as 10 s were preferred over the most 
reported 60 s trial length [20]). As a preliminary solution, multiple analysis and preprocessing steps 
have been considered to optimize the decoder estimation by deep neural networks [36]. Furthermore, 
using auditory attention decoders to detect attended speech has an essential limitation in real-life 
scenarios. The AAD system does not know a priori which speaker attends to select the appropriate 
decoder [36]; an important issue ignored in these researches. 

In contrast to these approaches, informative features do not require access to clean auditory 
stimuli, which makes them applicable in real-life situations such as a cocktail party. Although this can 
be regarded as a benefit, the approaches employing informative features in AAD still have some 
shortcomings as to their performance. This can be due to inefficient classification procedures or 
features extracted from the raw EEG data to train classifiers. 

In this study, a novel approach is introduced to detect attended speech based on the MMN data 
to overcome the aforementioned limitations of AAD methods. To this aim, first, the technique of 



Using Mismatch Negativity to Detect Selective Auditory Attention by Convolutional Neural Network 

 

[ 

Appl Med Inform 43(1) March/2021 27 
 

Tucker decomposition is employed to extract the desirable MMN component. To alleviate the 
deficiencies of informative feature-based approaches in AAD, some linear and nonlinear candidate 
features are obtained in the next stage. Then, the known statistical analysis of variance (ANOVA) 
test is used to select significant features for training a classifier. Finally, a feature set based on the 
combination of significant features is used by the convolutional neural network (CNN) to classify the 
attended and unattended speech.  

Material and Method 

Data Acquisition  

The EEG signals were recorded from forty subjects (age 27.3 ± 3.2; 32 males; 8 females; seven 
left-handed) in 30 trials (approx. 1800 s of data per subject), each having a length of ~1 min [37]. 
Two different stories were presented simultaneously via headphone to each subject; one to the left 
ear and one to the right ear. Twenty subjects were asked to attend to the left ear stimuli and the rest 
to the right ear stimuli. The recording of EEGs was performed with 128 electrodes with a sampling 
frequency of 512 Hz. Then, the EEG signals were down-sampled to 128 Hz to reduce the processing 
time. After each trial, 4-6 multiple choice questions on both stories were asked from the subjects. 
None of the subjects had hearing impairments or neurological disorders. To eliminate the effects of 
50 Hz power line noise, eye blinking, and muscle movement artifacts, the data were passed through 
a band-pass filter over the frequency range of 0-134 Hz using a BioSemi Active Two system. 

Two audio stories about nature, each with a length of ~1 min, were used as the auditory stimuli. 
While the participants focused their attention on the specific auditory stimulus, the corresponding 
auditory responses in the form of EEG signals were generated. A different male speaker read each 
story, and the native language was Dutch. The audio stories were dichotically presented with 
Sennheiser HD650 headphones, and the graphical user interface (GUI) from the Neurobehavioral 
System was designed to guide the subjects. The participants were asked to keep their full attention 
on a pre-determined auditory stimulus while their EEGs were being recorded. For each subject, the 
data acquisition protocols were randomly performed to prevent the EEG signals from being 
contaminated by a fixed order of auditory tasks or the dominance of ears. 

Proposed Auditory Attention Detection using Informative Features and Convolutional Neural Network 

This study introduces a novel algorithm that detects the attended speech at the left or right ear 
by classifying the distinguishing features extracted from the EEG signals. To this purpose, first, a 
segment of the EEG signal (~1000 ms) is used to derive the MMN component by the non-negative 
Tucker decomposition method. Then, the MMN data are utilized to extract linear (amplitude, peak 
time, maximum, and minimum) and nonlinear (approximate and sample entropies, Lyapunov 
exponent, fractal dimension, and Hurst exponent) features. At the next step, the ANOVA test is used 
to select significant features for training a classifier. At the end of the procedure, a feature set based 
on the combination of significant features is applied to the CNN (Convolutional Neural Network) 
classifier to detect the attended and unattended stimuli. The block diagram representation of the 
method used in this study is given in Figure 2. 
Non-negative Tucker decomposition method. The ERP data, which is often produced by 
averaging the EEG signals, include different modes (e.g., time, space, stimulus, and participant). The 
collection of these modes is commonly named as a tensor [38]. In the case that data are matrices (i.e., 
having two dimensions), the desirable ERP components (e.g., MMN) could be obtained by the 
decomposition of ERP data using the principal component analysis (PCA) or independent 
component analysis (ICA) techniques. However, when the ERP data are represented by a tensor (i.e., 
a data structure with more than two dimensions), tensor decomposition methods could be used to 
extract desirable components [39]. Two popular models for tensor decomposition are, respectively, 
Tucker decomposition [40] and canonical polyadic decomposition (CPD) [41]. Due to some 
advantages of the Tucker decomposition [42], in this paper, we adopt this model for obtaining MMN.  
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Figure 2. The block diagram of the proposed AAD algorithm to detect attended/unattended 
speech. After the decomposition of the data by the Tucker decomposition method, the MMN 

component is computed and processed to extract appropriate linear and nonlinear features. Then, 
an optimal feature set specified by the ANOVA test is selected and given to the CNN classifier to 

determine auditory attended/unattended stimuli. 

For the Nth-order tensor, 𝒀 ∈ ℜ𝐼1×𝐼1× ⋯ ×𝐼𝑁 , the Tucker decomposition is represented as follows 

[43]: 

 𝒀 = 𝑮 × 𝑨1
(1) × 𝑨2

(2) ×. . . 𝑨𝑁
(𝑁) + 𝑬 =

𝒀̂ + 𝑬,   
(1) 

where N is the number of modes (e.g., frequency, time, space, etc.), 𝑮 ∈ ℜ𝑅1×𝑅2×...×𝑅𝑁 is the core 

tensor, 
1 2

( ) (1) (2) ( ), , , n n

N

n I RN

n r r r

   A a a a  expresses the mode-n components matrix, r is the rank 

of the matrix, 𝒀̂ approximates tensor 𝒀,  and 𝑬 ∈ ℜ𝑅1×𝑅2×...×𝑅𝑁represents error or noise. Boldface 

capital letters denote matrices, boldface lowercase letters denote vectors, and lowercase letters denote 
scalars. Figure 3 illustrates a typical decomposition of data into three modes of frequency, time, and 

space. The matrices 
( )n

n A  and 𝑮  are solutions of Eq. (1) which are obtained by the following least-

square problem: 

𝑚𝑖𝑛‖𝒀 − 𝑨𝑛
(𝑛) 𝑮(−𝑛)‖

2
 ,  𝑛 = 1,  2, … ,  𝑁.  (2) 

In theory, the Tucker decomposition does not lead to particular solutions. However, when 
additional constraints are imposed on different modes, it results in a unique solution [44]. In order to 
overcome the sparsity of topography, independency among sources, and nonnegativity of time-
frequency representation, the nonnegative Tucker factorization (NTF) was used to generate 

appropriate components. The specific core tensor G, symbolized as, 𝑮(3,8,4,:) represents the desired 

MMN [45], where the first, second, and third entries of G correspond, respectively, to spectral (3rd 
component), temporal (8th component), spatial (4th component) modes, and ‘:’ means considering all 
samples of the fourth entry without change.  
 

 

Figure 3. 3D illustration of the Tucker tensor decomposition model. 𝐼1, 𝐼2, and 𝐼3 denote, 
respectively, the frequency, time, and space 

Feature extraction. Feature extraction plays a crucial role in extracting beneficial information from 

the EEG time series (𝑦(𝑡)) which are measured as the output of the brain system. In this study, 
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effective linear and nonlinear features are extracted from the MMN data. The linear features include 
amplitude (Amp), maximum (Max), minimum (Min), and peak time (PT) (peak time is the time when 
the signal level reaches 90% of its maximum value) [46]. In Figure 4, a sample of MMN signal 
obtained from the Tucker decomposition is shown with its linear features. In the following, the 
nonlinear features used in the implementations are described in detail. 
 

 

Figure 4. A sample of MMN signal obtained from the Tucker decomposition with the specified 
linear features of ‘Min’, ‘Max’, ‘PT’, and ‘Amp’ 

a) Power spectral density. Power spectral density (PSD) analysis of EEGs is a reliable method of 
describing brain functionality [31]. This method helps to determine which frequencies of the EEG 
signal have significant differences between two groups of left- and right-ear attended listeners. In 
other words, PSD is an indicator to find which of the subbands of EEG signals are related to 
attention. To investigate this, the EEG signal is decomposed to its subbands, including delta (0-4 
Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-20 Hz), and gamma (20-70 Hz) bands [47]. To examine 
which frequencies of the EEG signal are affected by the attentional mechanism, PSD is computed 
for the two groups of subjects. In one experiment, the subjects attend to the left story and ignore the 
right one and in the other, the subjects attend to the right story and ignore the left one. 

b) Approximate and sample entropies. Entropy indicates the randomness or regularity, and 
predictability of a system [48]. Approximate entropy (ApEn) is a popular tool in quantifying the 
amount of regularity and the unpredictability of fluctuations over time series 

 ( ) ( ), ( 1), , ( 1) ,y n y i y i y i m    (𝑖 = 1,  2, … ,  𝑁 − 𝑚 + 1),which has been used for 

analyzing many nonlinear dynamic signals such as hormone release rate, heart rate variability, and 

EEGs [49]. ApEn is driven from the correlation integral 𝐶𝑟
𝑚(𝑖) as: 

𝐴𝑝𝐸𝑛(𝑁, 𝑚, 𝑟) = (𝑁 − (𝑚 − 1))−1 ∑ 𝑙𝑛 𝐶𝑟
𝑚 (𝑖)

𝑁−(𝑚−1)
𝑖=1 − (𝑁 −

𝑚)−1 ∑ 𝑙𝑛   𝐶𝑟
𝑚(𝑖)𝑁−𝑚

𝑖=1   
(3) 

where, 𝑁is the number of data points, 𝑚 is the embedding dimension, and 𝑟 is the tolerance window. 
Larger values of ApEn means the signal has more complexity. In this study, the Lorenz model with 

𝑁 = 122 (corresponding to ~1000 ms),𝑚 = 2, and 𝑟 = 0.2 [50] is used to compute the ApEn 
values. 

c) Sample entropy. This feature is a modification of ApEn. Sample entropy (SampEn) has two 
advantages over ApEn: independence from data length (i.e., N) and relatively easy implementation. 

For the given N data points from a time series 𝑦(𝑛) = [𝑦(𝑖),  𝑦(𝑖 + 1), … ,  𝑦(𝑖 + 𝑚 − 1)], 
SampEn can be defined as: 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑁, 𝑚, 𝑟) = 𝑙𝑖𝑚
𝑛→∞

{− 𝑙𝑛 (
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
)},  (4) 

where 𝐵𝑚(𝑟)𝐵𝑚(𝑟) and 𝐴𝑚(𝑟) are the mean values of the similarity between patterns or templates 

of length  m and m+1 points, respectively. It is clear that 𝐴𝑚(𝑟) is always smaller or equal to 𝐵𝑚(𝑟). 
Therefore, SampEn is always either be zero or positive value. A smaller value of SampEn also 

indicates more self-similarity in the data set or less noise. Generally, 𝑚 = 2 and 𝑟 = 0.2 ×  𝑠𝑡𝑑 are 

chosen to compute SampEn, where 𝑠𝑡𝑑 denotes the standard deviation.  

d) Fractal dimension. A fractal is a set of data points that resembles the whole set when looking 
at smaller scales. An essential characteristic of a fractal is self-similarity. This means that the details 
of a fractal are similar to each other at a certain scale, but not necessarily identical to those of the 
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structure seen at larger or smaller scales. Fractal dimension (FD) of a waveform represents a powerful 
tool for transient detection. This feature has been used in the analysis of EEG to identify and 
distinguish specific states of physiological function [51]. According to the Katz method [52], the FD 
of a signal is defined as follows: 

𝐹𝐷𝑘𝑎𝑡𝑧 =
𝑙𝑜𝑔(𝐿)

𝑙𝑜𝑔(𝑑)
,  (5) 

where L is the total length of the signal and d is the estimated distance between the first and the most 

distant points of the sequence. Mathematically, 𝑑 can be expressed as 𝑑 = 𝑚𝑎𝑥‖𝑦(1) − 𝑦(𝑖)‖ , ∀𝑖, 
where 𝑦(𝑖) represents the time series. 

e) Hurst exponent. The Hurst exponent, 𝐻, is used to measure long-term dependency and its 

extent in a time series [53]. 𝐻evaluates the smoothness of a fractal time series based on the asymptotic 

behavior of the rescaled range of the process. In EEG analysis, 𝐻 is often used to characterize the 
non-stationary behavior of the signal episodes. The Hurst exponent is defined as: 

𝐸 [
𝑅(𝑛)

𝑆𝑡𝑑(𝑛)
] = 𝐶𝑛𝐻   as   𝑛 → ∞ (6) 

where 𝑅(𝑛) is the range of the first n cumulative deviations from the mean, 𝑆𝑡𝑑(𝑛) is their standard 

deviation, 𝐸[. ] the expected value, n is the time span of observation (number of data points in a time 

series), and C is a constant assumed to be 1. The range 0.5 < 𝐻 < 1 indicates the signals with long-

term positive correlations, 0 < 𝐻 < 0.5 indicates the signals with long-term switching between high 

and low values in adjacent pairs of the data and 𝐻 = 0.5 shows completely uncorrelated signals. 

f) Lyapunov exponent. There are some features of a system to determinate deterministic chaos 
from random or periodic behavior. A chaotic system can be recognized by its sensitive dependence 
on initial conditions. In such systems, two adjacent points in the trajectory at time 0 diverge widely 
from each other at time t. The distance between the times 0 and t in the ith direction is shown, 

respectively, by ‖𝛿𝑦𝑖(0)‖ and ‖𝛿𝑦𝑖(𝑡)‖ for the time series 𝑦(𝑡). By quantifying the separation rate, 

𝜆𝑖, Lyapunov exponent (LE) is defined as [54]: 

‖𝛿𝑦𝑖(𝑡)‖

‖𝛿𝑦𝑖(0)‖
= 2𝜆𝑖𝑡     (𝑡 → ∞) 

(7) 

The separation rate can be variant for different orientations of the initial separation vector. Thus, 
there is a spectrum of Lyapunov exponents equal in number to the dimensionality of the phase space. 
It is common to refer to the largest Lyapunov exponent (LLE) because it determines a notion 
of predictability for a dynamical system [55]. A negative exponent implies that the orbits approach a 
common fixed point. A zero exponent means the orbits maintain their relative positions, i.e., they are 
on a stable attractor. Finally, a positive exponent implies the orbits are on a chaotic attractor. 

Convolutional neural network (CNN) classifier. Convolutional neural network as a 
developed and improved neural network, consists of a number of different layers stacked together in 
a deep architecture: an input layer, a group of convolutional and pooling layers (which can be 
combined in various ways), a limited number of fully connected hidden layers, and an output (loss) 
layer [56]. The architecture of CNN used in this research is presented in Fig. 5. It is designed with 
two convolutional and two max-pooling layers. The strength of CNNs depends on extracting 
information or features with kernel filters from a given data. The feature map of convolutional layers 
is computed as:  

𝑎(𝑡) = (𝑦 ∗ ℎ)(𝑡) = ∫ 𝑦(𝜏)ℎ(𝑡 − 𝜏)
𝑁−1

𝜏=0
,  (8) 

where 𝑎 is the feature map, 𝑦, ℎ, and 𝑁  are the input signal, filter, and the number of elements in 𝑦, 
respectively. The pooling layer or down-sampling layer reduces the dimension of the former output 
of convolutional layer to decrease computational load and prevent overfitting. In this study, the max-
pooling operation is used to select the maximum value in each feature map. The fully connected layer 
has full connection to all the activations in the previous layer. Rectified linear activation unit (ReLU) 
and Softmax are the two types of activation functions employed in the CNN structure. They are 
chosen to impart nonlinearity to the neural network structure. Softmax is used to predict which class 
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(left attended or right attended) the extracted feature belongs to. Drop out layer is considered to 
reduce data length. Figure 5 shows the structure of the CNN classifier used in this work. In Table 1, 
the layers and the corresponding parameters of the proposed CNN network are given in detail. The 
hyper-parameter settings of the network are presented in Table 2. 

Simulations and Evaluations 

Experimental Setup 
For the purpose of evaluating the performance of the proposed selective AAD method, three 

recently developed attention detection systems are simulated and used as baselines.  

 

Figure 5. The deep pyramidal 
CNN architecture used for the 
classification of left- and right-

attended speech. 

Table 1. Detailed information about the proposed CNN network. 

Number of 
layers 

Number of 
Neurons 

Kernel 
size 

Parameters of 
layers 

Conv1D 2042 5×1 
Strides=1, 
Activation=ReLU 

Max-Pooling 1021 2 Strides=2 

Conv1D 1018 3×1 
Strides=1, 
Activation=ReLU 

Max-Pooling 509 2 Strides=2 

Drop Out 255 - Rate= 0.5 

Dense 100 - 
Unit size=2, 
Activation= Soft-
Max 

Fully connected 50 - - 

Fully connected 2 - - 

Table 2. Different parameter settings used to create the CNN 
network. 

Parameters Values 

Loss Function Categorical cross entropy 

Optimizer Adam 

Learning rate 0.001 

Batch size 100 

Epochs 50 

 
The baseline systems have an inherently different structure in the detection of attended speech 

and are denoted as “O’Sullivan et al.” [25], “Akram et al.” [26], and “Lu et al.” [35]. While the 
methods of “O’Sullivan et al.” and “Akram et al.” use a backward mapping technique to reconstruct 
the envelope of the attended speech, the approach of “Lu et al.” employs the technique of informative 
feature to extract entropies (i.e., approximate, sample, composite multiscale, and Fuzzy entropies) for 
learning the classifier. 

In the training of the first and second baseline systems (“O’Sullivan et al.”, “Akram et al.”), two 
of the three available trials for each subject are taken randomly in the training of decoders. In this 
way, in each run of the training procedure, 40 trials (2 (trials) × 20 (subjects)) are used in the design 
of the decoder. In the testing phase, the remaining data (20 trials) of each run are given to the designed 
decoder to reconstruct the attended speech envelope. The third baseline's training and testing phases 
(“Lu et al.”) and the proposed methods are as follows. First, the trials of all subjects are put in 
succession to form an array of 60 trials. Then, in each run of the algorithms, 50 trials (83% of the 
whole dataset) are selected randomly for the training and validation of the classifiers. The remaining 
trials are taken for the test procedure. The random splitting and a 10-fold cross-validation approach 
are used to evaluate CNN.  
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Evaluation Criteria 

Three parameters, namely, Accuracy, Sensitivity, and Specificity, are considered to determine the 
performance of the CNN classifier. The value of the Accuracy shows the overall detection accuracy. 
Sensitivity is defined as the rate of correctly classified trials while Specificity indicates the rate of 
correctly rejected trials. These parameters are defined as [57].:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100  (9) 

𝑆𝑒𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100  (10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100  (11) 

where, TP (true positive) and TN (true negative) are, respectively, the number of correctly identified 
and correctly rejected subjects. On the other hand, FP (false positive) and FN (false negative) denote 
the number of incorrectly identified and incorrectly rejected subjects, respectively. 

Statistical Analysis 

The statistical analysis method is a multiple-sample parametric or non-parametric analysis of 
variance which is used to evaluate linear and nonlinear features. The analysis of variance (ANOVA) 
test [58] is utilized to examine significant differences between two or more data groups. Clearly, 
ANOVA checks the impact of one/more factor(s) by comparing the means of different samples. 
The p_value is the parameter to determine a significant difference. In this work, the threshold 0.005 
(i.e., p-value < 0.005 is used to select significant features extracted from MMN. 

Results and Discussion  

EEG Subbands Analysis 

Figure 6 shows the variations of these subbands for a subject during the time he/she attends to 
the right or left ear stimuli. All group-level statistical comparisons are conducted using the ANOVA 
test and a significance threshold of 0.5% is chosen. In Table 3, the average of the mean and standard 
deviations of PSD between the two groups of subjects attending to the left-and right-ear stimuli are 
reported in different subbands of the delta, theta, alpha, beta, and gamma. The numerical p-values 
for different EEG subbands are also illustrated in this table, where significant differences between 
groups of listeners are depicted with the symbol “*”.  

Table 3. The average mean ± std values of PSD obtained in different EEG subbands between the 
two groups of subjects attending to the left-and right-ear stimuli. The asterisk indicates a significant 

difference (𝑝_𝑣𝑎𝑙𝑢𝑒 < 0.005) between both groups of subjects in the attention task. 

EEG subbands Delta Theta Alpha Beta Gamma 

(mean±std)×10-3 12.5±3.5* 6.9±3.1* 2.4±0.8* 2.9±1.1* 5.2±2 

std = standard deviation 

 
As shown in Table 3, there are significant differences between the groups of participants 

(attending to the left-and right-ear stimuli) in the frequency ranges up to 30 Hz. For frequencies 
above 30 Hz (i.e., gamma-band), significant differences are not observed. Knowing that the MMN 
data lies in the frequency ranges under 30 Hz [60], our experiments' outcome confirms the choice of 
MMN as a reliable and reasonable EEG component to detect and classify auditory attention state. 

Results for Scalp EEG 

This study focuses on the MMN changes to detect attended speech. To achieve this goal, MMN 
is obtained from the non-negative Tucker decomposition. Figure 7 shows Tucker decomposition 
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results in different modes (i.e., spectral, temporal, and spatial) and their corresponding components, 
respectively. Referring to Figure 7, MMN is represented completely by the specific core tensor (i.e., 

𝑮(3,8,4, : ); see Sec. 2.2.1). The EEGLAB toolbox is used to analyze data in spatial mode [59]. After 

the decomposition procedure, several linear and nonlinear features are extracted from the MMN data. 
Table 4 represents the mean and standard deviation values of all features. Here, by observing the p-
values of the ANOVA test, all features except HE are selected as significant which are given to the 
classifier. 
 

 

Figure 6. The variations of EEG subbands, delta (0-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta 
(12-20 Hz), and gamma (20-70 Hz), for a subject attending to a) the left-ear or b) the right-ear 

stimuli 

Table 4. The average mean ± std values of linear and nonlinear features obtained from the MMN 
data between the two groups of subjects attending to the left-and right-ear stimuli. The asterisk 

indicates a significant difference (p-value < 0.005) between both groups of subjects in the attention 
task. 

Features FD HE LE ApEn SampEn 

mean ± std 1.06 ± 0.02*
 0.49 ± 0.28 29.47 ± 9.3* 0.19 ± 0.09* 0.83 ± 0.24* 

Features Amp (µV) PT (ms) Max (µV) Min (µV) 

mean ± std 5.25 ± 11.9* 361.3 ± 38.3* 4.19 ± 4.9* -4.35 ± 5.5* 

std = standard deviation 

 
In the next stage, attention patterns are classified by CNN using different combinations of 

significant features specified by the ANOVA test. The CNN classifier is learned to separate data 
corresponding to the subjects attending to the left or to right stimuli. To this end, a 10-fold cross-
validation approach is adopted. For each fold of the data, the train of the classifier is repeated 50 
times. The assessment of the classifier performance for various combination of features is shown in 
Table 5. According to this table, the feature set LE+SampEn+Amp yields the best classification 
accuracy with acceptable sensitivity and specificity values. Figure 8 depicts the performance measures 
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of Accuracy and Loss for the CNN classifier during training for different epochs. By observing the 
graphs of Accuracy and Loss, the classifier reaches its best performance after 20 epochs of each fold. 

 
 

 

 

(a) 

  

(b) 

Figure 7. The results of Tucker decomposition 
for a sample MMN shown in different modes 
of a) spectral, b) temporal, and c) spatial, and 

their corresponding components for the specific 

core tensor (i.e., 𝑮(3,8,4, : )). 
(c) 

 

Table 5. The performance evaluation of the CNN classifier in terms of Accuracy, Sensitivity, and 
Specificity for different combinations of features obtained from 128 electrodes. The highest values 

are depicted as boldface. 

Features Accuracy Sensitivity  Specificity  

Amp 67.73 66.75 67.72 

Max 54.19 53.01 54.45 

Min 51.75 60.73 67.21 

PT 59.63 75.13 62.96 

LE 65.00 65.12 64.42 

FD 61.74 62.84 64.19 

ApEn 64.64 66.21 65.41 

SampEn 66.85 64.68 57.22 

LE + FD 79.94 79.58 79.40 

LE + ApEn  79.37 77.23 76.59 

LE + SampEn 80.17 87.41 89.30 

SampEn + FD 71.59 76.77 72.29 

SampEn + Amp 80.58 82.35 82.15 

Amp + PT 79.92 80.02 78.50 

SampEn + ApEn 71.99 70.94 70.44 

LE + FD + SampEn 89.46 88.98 89.19 

Amp + PT + Max 71.15 76.75 72.95 

LE + SampEn + Amp 98.21 97.45 98.40 

LE + FD + SampEn + Amp 97.83 97.77 98.61 

LE + FD + SampEn + ApEn  91.32 91.29 90.83 

Amp + PT+ Max + Min 76.71 77.55 69.59 

LE + FD + SampEn + ApEn + Amp 96.91 96.09 97.10 
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LE + FD + SampEn + ApEn + PT   94.10 94.02 95.34 

LE + FD + SampEn + ApEn + Amp + 
PT + Max + Min  

89.48 90.69 89.99 

 

(a) (b)  

Figure 8. The training procedure of the proposed CNN classifier in terms of Accuracy (a) and 
Loss (b) for the data obtained from 128 electrodes 

The comparison of the proposed AAD method with three baseline classification approaches in 
terms of mean classification accuracy, for three types of input data, raw EEG, raw MMN, and the 
feature set LE+SampEn+Amp, is shown in the Figure 9 (panel (a)). As inferred from the figure, the 
proposed method gives the highest classification rates as compared with “O’Sullivan et al.”, “Akram 
et al.”, and “Lu et al.” for all types of inputs. Furthermore, CNN attains the highest accuracy (98.21%) 
in classifying two groups of left- and right-ear attended subjects when trained with 
LE+SampEn+Amp. 

 

  
(a) (b) 

. 

Figure 9. The comparison of the proposed and baseline AAD methods in terms of mean 
classification accuracy for three types of input data obtained from 128 electrodes, (b) obtained from 

6 near-ear electrodes 

As inferred from Figure 9, the proposed method gives the highest classification rates, 98.21%, as 
compared with baseline systems: “O’Sullivan et al.”, “Akram et al.”, and “Lu et al.” for all types of 
inputs (i.e., raw EEG, raw MMN, and significant feature set) with the feature set of 
LE+SampEn+Amp. 
Results for Near-Ear Electrodes 

An important application of the proposed AAD concerns developing a method to detect auditory 
attention for hearing-aids listeners. Since hearing-aids are designed as around-the-ear systems, the 
proposed AAD method should be implemented in such a form that EEGs are recorded only from 
the electrodes close to the ears. This removes the requirement for scalp EEG measurements and 
decreases the computational load as well. To achieve this aim, EEGs of six nearest electrodes (TP8, 
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FT8, and T8 for the right ear and TP7, FT7, and T7 for the left ear, with Cz as the reference electrode) 
are chosen and analyzed.  

Figure 10 shows the results of statistical analysis for features of Amp, PT, Max, Min, LE, FD, 
SampEn, ApEn, and HE extracted from the MMN component during the auditory attention tasks. 

The values of these measurements are shown as the mean±standard deviation. The small p-values of 
the ANOVA test, marked with symbol “*”, indicate the significant differences between the two states 
of auditory attention tasks. For LE, HE, FD, Amp, and SampEn, there are significant differences in 

all six channels in which the p_values are less than 0.005. For ApEn, TP8, TP7, T8, FT8, FT7, for 
Max, TP8, TP7, T8, FT8, for Min, TP8, T8, FT8, FT7, and for PT, TP8, T8, FT8 electrodes have the 
small p-values. As inferred from Figure 10, TP8, T8 and FT8 have significant differences with all nine 
features. Therefore, it could be possible to use just these three electrodes in order to design neuro-
steered hearing aids with attention detection capability at the right ear. The results of the ANOVA 
test suggest that LE, HE, FD, Amp, and SampEn are important features to be considered in the 
attention detection. The impact of electrode reduction on AAD using different combinations of 
selected features is explored by the CNN classifier.  

The classification performance of various feature combinations is shown in Table 6.  

Table 6. The performance evaluation of the CNN classifier in terms of Accuracy, Sensitivity, and 
Specificity for different combinations of features obtained from 6 near-ear electrodes. The highest 

values are depicted as boldface 

Features Accuracy Sensitivity  Specificity  

Amp 58.22 57.91 57.55 

LE 61.96 60.47 62.32 

FD 59.45 59.27 59.14 

HE 58.32 59.44 56.98 

SampEn 62.17 63.57 63.16 

LE + FD 62.86 62.33 61.25 

HE + FD 61.05 60.50 63.11 

LE + HE 59.14 57.96 58.78 

LE + SampEn 64.28 68.27 63.45 

SampEn + FD 63.30 64.09 64.37 

SampEn + Amp 63.76 62.26 61.85 

HE + SampEn 63.61 61.15 61.31 

LE + FD + HE  67.50 68.98 69.85 

LE + FD + SampEn 68.43 66.32 67.72 

LE + SampEn + Amp  71.12 72.65 70.25 

LE + FD + HE + SampEn  70.58 71.85 69.46 

LE + FD + SampEn + Amp 71.75 72.41 71.90 

LE + FD + SampEn + Amp + HE 70.63 71.54 71.96 

 
 
According to this table, the feature set LE+FD+SampEn+Amp yields high classification 

accuracy and sensitivity. The classification results are demonstrated in Figure 9 (panel (b)) for three 
different input data, raw EEG, raw MMN, and LE+FD+SampEn+Amp. As it is evident, the 
proposed AAD method achieves high accuracy in the classification of two groups of auditory 
attention tasks as compared with the baseline systems. It is observed that the classification result for 
the selected feature set is near to that of “Lu et al.” method, however, raw MMN data results in the 
highest accuracy. This could be due to the fact that in contrast to the selected feature set, raw MMN 
carries a large amount of data which is required by the CNN classifier for its best performance. 
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Figure 10. The statistical results (i.e., mean±standard deviation) obtained from 6 near-ear 
electrodes for nine features extracted from the MMN component during the attention to the left- 

and right-ear stimuli. The symbol “*” denotes significant differences between the states of two 
auditory attention tasks. 
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As compared with the classification performance of 128 electrodes data, the performance of the 
classification results with 6 near-ear elactrodes is in an acceptable range. These results could be 
considered for using auditory attention detection in order to design neuro-steered hearing aids with 
attention detection capability at the right ear where our need to scalp EEG recording is removed. 

This research could be considered as a case study with only two speakers which limits the 
generality of the results to be applied to a more realistic condition. Creating a real acoustic 
environment with more than two speakers is suggested as further future work. Also, an important 
aspect that remains unclear is whether the spatial location of speakers influences the classification 
accuracy. Furthermore, the role of working memory of subjects is unknown in the attention detection 
in a cocktail party scenario with multiple speakers. As a technical issue, handling the influence of 
working memory on AAD with CNN is impossible, since this kind of neural network considers only 
the current input for the classification. Nowadays, powerful and efficient deep hybrid neural 
networks, using CNN and the long-short term memory (LSTM), have been developed which could 
handle sequential data and memorize previous inputs due to their internal memory. As a future plan, 
the authors plan to implement the proposed AAD method with the CNN-LSTM model. 

Currently, noninvasive EEG-based AAD methods are considered as important tools for 
improving hearing-aids. This means that AADs could be employed in the design of neuro-steered 
hearing prostheses to amplify the attended speech in a competitive talker scenario for HI subjects. 

The previous studies have confirmed that MMN, as a small part of EEG, is affected by auditory 
attention. This has motivated us to develop a new AAD approach which is both accurate and optimal 
in the classification of two groups of subjects attending to the left- and right-ear stimuli. In this paper, 
the MMN data are extracted from the EEGs by the Tucker decomposition algorithm. For the first 
time, significant linear and nonlinear features are extracted from MMN to examine distinguishable 
differences between the two auditory attention task using the ANOVA test. Then, an optimal feature 
set is selected and applied to the CNN classifier to detect the attended and unattended stimuli.  

Few studies have been conducted to process and analyze the simultaneous EEG and fMRI data 
using tensor decomposition method. This lies in the fact that this method is based on complex 
mathematical relations and, therefore, its implementation imposes a high computational load. The 
proposed AAD method solves this problem by employing fewer samples of EEG (i.e., ~1 s 
corresponding to the length of MMN) and smaller temporal resolutions in extracting MMN. In other 
words, compared to the conventional AAD methods which use approx. 60 s of EEG signals, the 
proposed algorithm requires only a small portion of EEG for the classification task, which makes it 
suitable for real-time tracking of attention. 

The evaluation results of the current study showed that the CNN-based auditory attention 
classifier is capable of achieving high accuracy (98.21%) as compared with the baseline systems. 
Implemented as around-the-ear systems, the current technology of hearing-aids incorporates fewer 
electrodes to make the processing time as small as possible. To achieve this goal, EEGs of six nearest 
electrodes (i.e., TP8, TP7, T8, FT8, T7, and FT7) are considered in the extraction of optimal features 
to detect auditory attention. The classification performance (71.75%) shows that using only these 
electrodes in hearing-aids could be a promising strategy in detecting attentional behavior. 

List of abbreviations  

ASA = auditory scene analysis 
AAD = auditory attention detection 
BCI = brain-computer interface 
EEG = electroencephalography 
fMRI = functional magnetic resonance imaging 
MEG = magnetoencephalography 
ERPs = event-related potentials 
MMN = mismatch negativity 
ICA = independent component analysis 
SVM = support vector machines 
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GUI = graphical user interface 
PCA = principal component analysis 
CPD = canonical polyadic decomposition 
ApEn = Approximate entropy 
SampEn = Sample entropy 
FD = Fractal dimension 
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