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Abstract 
Aim: Clinical diagnostic decision support systems, which use pathophysiological information to 
improve diagnostic accuracy, have historically required knowledge of various relations between 
pathophysiological states to handle complex cases. Developing a knowledge model centered on 
pathophysiological functions instead of pathophysiological states may reduce this unwieldiness. 
Materials and Methods: In this study, such a knowledge model is provided by a modified and generalized 
factor graph, the pathophysiological query (PPQ) graph. A PPQ algorithm that automatically suggests 
possible pathological conditions of patients in the form of PPQ graphs is also developed. To evaluate 
the model and the algorithm, a computer software that processes the PPQ algorithm and PPQ graph, 
which represent the acid-base regulatory functions, was developed. Four case reports were considered, 
and up to two-time points, used as evaluation data points, were selected for each case. The software 
was used to obtain the diagnoses suggested by the PPQ model, which were then compared to 
diagnoses formulated by three physicians. Results: The output acquired by the proposed method was 
in accordance with the diagnosis of the physicians in three out of the five cases. Conclusion: The PPQ 
model may be a valuable diagnostic tool for suggesting differential pathological conditions to 
physicians in complex cases. 
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System 

Introduction 

Diagnostic errors in medicine include both system-related errors and cognitive errors. Mark et al. 
reported that among 100 cases of assumed diagnostic error involving internists, system-related factors 
contributed to 65% of the cases and cognitive factors in 74% [1]. A major cognitive error is 
"premature closure", physicians stop thinking of other possibilities after reaching a preliminary 
diagnosis[1]. A clinical diagnostic decision support system (CDDSS) is a type of program developed 
to help physicians diagnose patients; for example, by leading the differential diagnoses[2] and avoiding 
diagnostic errors. 

http://opendefinition.org/licenses/cc-by/
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CDDSSs were actively studied in the 1980s. The majority of systems that were classified as 
CDDSSs, such as INTERNIST-1 [3], Iliad [4], and DXplain [5], were based on knowledge about 
relationships between symptoms and diseases. These CDDSSs are conceptual descendants of Gorry’s 
schemata-based heuristic CDSS [6]. INTERNIST-1 [3], which deeply affected these systems, received 
patient symptoms as input, and listed them according to their confidence values. However, such 
systems cannot cope with complex cases in which multiple diseases overlap [7]. Another type of 
CDDSSs used pathophysiological information, enabling them to handle situations with multiple 
overlapping diseases [7]. Such systems also had the advantage of being able to explain causation 
between pathophysiological states, allowing physicians to understand the causes of symptoms and 
signs [8]. 

Additionally, there is an emerging need to utilize profound knowledge of the underlying 
pathophysiological concepts for diagnosis in many fields [9,10]. The acid-base electrolyte program 
(ABEL) was such a system that could output pathophysiological explanations [11]; it expressed the 
patient’s condition by making use of a knowledge base about causal relationships between 
pathophysiological states. However, in physiologically complex cases, the system required very 
extensive knowledge about the numerous states that compose such cases. To address this issue, we 
utilize the knowledge of pathophysiological functions assuming that pathophysiological states can be 
interpreted as the result of abnormalities. A pathophysiological function model and an algorithm to 
suggest differential pathological conditions of patients were developed. The aim of this study was to 
demonstrate the capability of this model and algorithm to explain complex cases. 

Materials and Methods 

Overview 

In this study, a knowledge-based model and an algorithm that identifies differential pathological 
conditions were proposed. The knowledge-based model is a graphical model that represents 
pathophysiological functions; it is a subtype of a factor graph with some modifications and 
restrictions named the pathophysiological query (PPQ) graph. The related PPQ algorithm receives 
patient information as input and produces a list of possible differential pathological conditions in the 
form of combinations of abnormal functions. A computer program that implements the PPQ 
algorithm was developed, and both the PPQ graph and PPQ algorithm were evaluated for complex 
medical case reports. In the next section, useful terminology regarding the PPQ graph and algorithm 
is introduced. 

Nodes in Pathophysiological Query Graphs 

Like any factor graph, the PPQ graph contains two types of nodes: variable nodes and factor 
nodes. It is a bipartite graph, which means that every edge in the graph connects nodes of a different 
type. Variable nodes are associated with patient data such as pH or pCO2 (restricted in the present 
study to three discrete values). Two types of factor nodes are defined: functional factor nodes and 
definitive factor nodes, both expressing the relationships between values of neighboring variable 
nodes. Functional factor nodes are associated with functions in the body and take two states: 
normal and abnormal. For example, when the function of the respiratory center is normal, if the level 
of pO2 drops, the ventilation volume increases to keep the level of pO2. Contrarily, when the function 
is abnormal, the ventilation volume does not change, or it decreases. As such, the state of a functional 
factor node depends on the states of those variable nodes joined to it by the edges; the precise rule 
governing this is shown explicitly in the PPQ graph “interpretation table”. The direction of the edge 
between a functional factor node and each of its neighbor variables gives information about causality; 
these directions constitute the static knowledge that is embedded in the PPQ graph. Definitive factor 
nodes have two states, 1 or 0, depending on whether they represent a possible combination of values 
of the variable nodes to which edges join them. This can be shown explicitly in the form of a 
“restriction table,” the entries of which are combinations of neighbor states for which the definitive 
factor node takes the value 1. Some example tables for a small graph are shown in Table . The 
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knowledge in a PPQ graph is composed of the graph structure and the values of the factor nodes of 
both types.  

Table 1. Restriction table of the definitive factor nodes: Restriction table of "pH Def" 

  Metabolic effects Respiratory effects pH 

1 alkalosis Alkalosis alkalemia 

2 alkalosis Normal alkalemia 

3 alkalosis Acidosis alkalemia 

4 alkalosis Acidosis normal 

5 alkalosis Acidosis acidemia 

6 normal Alkalosis alkalemia 

7 normal Normal normal 

8 normal Acidosis acidemia 

9 acidosis Alkalosis alkalemia 

10 acidosis Alkalosis normal 

11 acidosis Alkalosis acidemia 

12 acidosis Normal acidemia 

13 acidosis Acidosis acidemia 

 

Terminology for Pathophysiological Query graphs 

A variable state set is defined as a subset of the values of the variable nodes in a PPQ graph. As 
variable nodes are associated with patient data, the variable state set represents the state of a particular 
patient. In order to explain how the PPQ algorithm works, the term complete variable state set is 
introduced, which includes the value for every variable node in a PPQ graph. 

Interpretation graph is a term related to the whole graph state: the interpretation graph holds 
information about the states of all functional factor nodes as well as variable nodes. 

Pathophysiological Query Algorithm 

The PPQ algorithm receives partial information about patients in the form of a variable state as 
input set and has as outputs a list of possible interpretation graphs. In the context of CDDSS, the 
algorithm outputs differential pathological conditions in the form of interpretation graphs. The PPQ 
algorithm is composed of three steps: 

1. From the input variable state set, list all possible complete variable state sets. 
2. From the list produced in Step 1, generate all possible interpretation graphs. 
3. Sort the interpretation graphs in ascending order of a number of functional factor nodes that 

are interpreted as abnormal. 
The operation of the algorithm implementing a simple PPQ graph that represents the knowledge 

of the acid-base regulatory function [12] is illustrated in the next section. 

Operation of the Pathophysiological Query Algorithm 

Figure 1 shows an example PPQ graph that represents the knowledge of the acid-base regulatory 
function. There are three variable nodes: “pH,” “respiratory effects,” and “metabolic effects.” The 
node “pH” has three states: “acidemia,” “normal,” and “alkalemia.” The “respiratory effects” and 
“metabolic effects” nodes have three states each: “acidosis,” “normal,” and “alkalosis.” There are 
two functional factor nodes (“respiratory Func” and “metabolic Func”) and one definitive factor 
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node (“pH Def”) in this PPQ graph (Figure 1). Tables 1 and 2 correspond to the interpretation table 
and restriction table of the graph, respectively. 

 

 

Figure 1. Simple PPQ graph representing the acid-base regulatory function. The large circles are 
variable nodes; the small squares are functional or definitive factor nodes. PPQ, Pathophysiological 

Query; Func and Def stands for functional factor node and definitive factor node, respectively. 

Table 2. Interpretation table of the functional factor nodes 

Interpretation table of "metabolic Func" Interpretation table of "respiratory Func" 

pH → metabolic effects interpretation pH → respiratory effects interpretation 

alkalemia   acidosis normal alkalemia   acidosis normal 

acidosis   alkalosis normal acidosis   alkalosis normal 

normal   normal normal normal   normal normal 

other abnormal other abnormal 

 
As an example, we applied the PPQ algorithm to a simple variable state set for which the value 

of the pH variable is “acidemia.” The process steps are as follows. 
1. List all possible complete variable state sets. As the variable nodes “metabolic effects” and 

“respiratory effects” can each take three different values, there are nine possible complete 
variable sets (Table 1). 

Table 1. All possible full variable sets 

G1   G2   G3  

variable node state  variable node State  variable node state 

pH acidemia  pH acidemia  pH acidemia 

respiratory effects acidosis  respiratory effects alkalosis  respiratory effects acidosis 

metabolic effects acidosis  metabolic effects Acidosis  metabolic effects alkalosis 

G4   G5   G6  

variable node state  variable node State  variable node state 

pH acidemia  pH acidemia  pH acidemia 

respiratory effects normal  respiratory effects Acidosis  respiratory effects normal 

metabolic effects acidosis  metabolic effects Normal  metabolic effects normal 

G7   G8   G9  

variable node state  variable node State  variable node state 

pH acidemia  pH acidemia  pH acidemia 

respiratory effects normal  respiratory effects alkalosis  respiratory effects alkalosis 

metabolic effects alkalosis  metabolic effects normal  metabolic effects alkalosis 
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2. Generate all possible interpretation graphs. According to rows 5, 8, 11, 12, and 13 of the 
restriction table (Table ), the possible complete variable sets are G1 to G5. After selecting 
the possible complete variable sets, add the interpretation of every functional factor node, 
referring to the interpretation table (Table ). This results in the five interpretation graphs 
described in Table 2. 

Table 2. All possible interpretation graphs 

G1   G2   G3  

nodes state  nodes state  nodes state 

pH acidemia  pH acidemia  pH acidemia 

respiratory effects acidosis  respiratory effects alkalosis  respiratory effects acidosis 

metabolic effects acidosis  metabolic effects acidosis  metabolic effects alkalosis 

respiratory effects Func abnormal  respiratory effects Func normal  respiratory effects Func abnormal 

metabolic effects Func abnormal  metabolic effects Func abnormal  metabolic effects Func normal 

G4   G5     

nodes state  nodes state    

pH acidemia  pH acidemia    

respiratory effects normal  respiratory effects acidosis    

metabolic effects acidosis  metabolic effects normal    

respiratory effects Func abnormal  respiratory effects Func abnormal    

metabolic effects Func abnormal  metabolic effects Func abnormal    

 
3. Sort the interpretation graphs in ascending order of the number of functional factor nodes 

interpreted as abnormal. G2 and G3 each have one abnormal functional factor node, while 
G1, G4, and G5 each have two. As a result, the PPQ algorithm sorts them into two groups: 
a low-abnormality group (G2, G3) and a high-abnormality group (G1, G4, G5). That means 
that if a patient is in a condition of acidemia followed by either respiratory acidosis or 
metabolic acidosis, and the counterpart system is alkalosis to alleviate the change, then the 
level of abnormality is low (G2 and G3). If, however, both systems are normal or acidotic 
despite the acidemia, (G1, G4 and G5), the level of abnormality is high. In G2, the single 
abnormality is metabolic, while in G3 it is respiratory. The other cases involve both 
metabolic and respiratory abnormalities. Figure 2 serves as an output example, showing the 
graphical representation of G2. 

A 

 

B 

 

Figure 2. (A) Graphical representation of the interpretation of graph G2. (B) Legend of 
interpretation graph 

Experimental Evaluation: Settings 

The PPQ algorithm was evaluated following four steps. First, a PPQ graph for a field of acid-base 
regulatory functions was developed. Second, four case reports with detailed descriptions focused on 
the acid-base disturbance of patients were selected. After that, for each case, up to two evaluation 
data points (total of five points) were selected. Third, practicing physicians made the interpretation 
graphs for each data point; these were taken as gold-standards. Finally, a computer software to 
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implement the PPQ algorithm (Figure 4) was developed, and the rank of the gold-standards were 
searched within the lists of interpretation graphs generated by the software. 

First Step: Development of the Pathophysiological Query Graph 

The PPQ graph of acid-base regulatory functions is developed using information from a standard 
pathophysiology textbook [13] (Figure 3). The graph is composed of 11 functional factor nodes, 5 
definitive factor nodes, and 17 variable nodes. 

 

Figure 3. PPQ graph of acid-base regulatory functions. PPQ, Pathophysiological Query 

Second Step: Selecting Case Reports and Data Points 

The search was done in PubMed for four major acid-base disturbances: respiratory acidosis, 
respiratory alkalosis, metabolic acidosis, and metabolic alkalosis. One case report for each type of 
disturbance was selected. After selecting the case reports, one or two evaluation data points were 
selected for each case report. Five data points were selected (Table 3, Table 4). 

Table 3. Selected case reports for each acid-base disturbance 

Case Report # Description 

Case 1 Respiratory alkalosis due to hyperventilation after kidney transplant surgery[14] 

Case 2 
Metabolic acidosis caused by inhalation of formic acid accompanied by carbon monoxide 
intoxication[15] 

Case 3 Metabolic alkalosis due to intake of anti-diuretics and licorice [16] 

Case 4 Respiratory acidosis accompanied by idiopathic interstitial pneumonia [17] 

Table 4. Case reports and data points 

Case report Target time point Datapoint code 

Case 1: respiratory alkalosis 1 day after surgery Point 1 

Case 2: metabolic acidosis On admission Point 2 

Case 3: metabolic alkalosis On admission Point 3 

Case 4: respiratory acidosis 

On admission Point 4-1 

Repeated arterial blood gas analysis Point 4-2 
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After selecting the data points, initial variable state sets were extracted from laboratory data 
written in case reports for each data points. These variable state sets were validated by physicians. 

Third Step: Definition of the Gold-Standards 

Three physicians were recruited from the Division of Nephrology and Endocrinology, The 
University of Tokyo. Their medical experience varied from 7 years to 16 years, while they all held 
General Internal Medicine Specialist certificates. For each data point, the physicians read the case 
reports and made interpretation graphs by themselves. Afterward, the physicians discussed the cases 
among themselves until they agreed on one interpretation graph for each data point. These were 
adopted as the gold-standards. 

Fourth Step: Comparing the Output of the Software and Gold-Standards 

A comparison was conducted between the gold-standard interpretation graphs and the ones 
produced by the developed evaluation software (Figure 4). Whether the software output contained 
the gold-standard graph or not was evaluated. 

 

 

Figure 4. Screenshot of the evaluation software, which accepts input of patient information in the 
form of value lists of variable nodes, generates interpretation graphs and visualizes them one by 
one. The program was written in the Kotlin language, using the JavaFX library for the graphical 

user interface 

Results and Discussion 

Table 5 indicates whether the gold-standards were contained in the computer output and the ranks 
of gold-standards among the output graphs. For three out of the five data points, the gold-standard 
interpretation graphs were contained in the software output. However, the gold-standard 
interpretation graphs were not contained in the output of the software for data points 1 and 3. The 
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interpretation graphs were ranked in ascending order according to the number of abnormal functional 
factor nodes.  

Table 5. Ranking of gold-standard interpretation graphs among output lists. Not applicable (NA): 
the gold-standard graph was not included in the output. 

  
Gold-Standard 
Contained or Not 

Number of 
Abnormal 
Functional Factor 
Nodes of Gold-
Standard 

Rank of Gold-
Standard/Total 
Number of 
Output Graphs 

Data point 1 Not contained 4 NA/26193 

Data point 2 Contained 6 969/6071 

Data point 3 Not contained 4 NA/30141 

Data point 4-1 Contained 3 11/8106 

Data point 4-2 Contained 4 165/37727 

 
Figure 5 (A) shows the gold-standard interpretation graph of data point 2, which is contained in 

the output of the software. In this case, the patient attempted suicide by inhaling carbon monoxide. 
He mixed formic acid and sulfuric acid to generate carbon monoxide. At data point 2, the patient 
had lung injury (Func F11) and was hypoxic despite increased ventilation volume (Func F10). 
According to the physicians, he suffered dehydration (Func F7), acute kidney injury due to exposure 
to formic acid (Func F2), elevated K+ due to rhabdomyolysis (Func F5), and increased acid 
production due to anaerobic metabolism (Func F3). Figure 5 (B) shows the gold-standard 
interpretation graph of data point 1, which is not contained in the software output. In this case, the 
patient had undergone a kidney transplant that caused low reabsorption of bicarbonate (Func F2). 
According to the physicians, he suffered dehydration (Func F7) due to insufficient infusion; he also 
exhibited decreased acid intake (Func F4) and increased acid production (Func F3) as a result of 
fasting for the operation. 

The study evaluating CDDSS [18] mentioned the importance of including appropriate diagnosis 
on the output list even if the case was complex with an atypical presentation because true diagnosis 
might appropriately be ranked fairly low in such cases. Table 5 showed that the PPQ algorithm 
successfully generated interpretation graphs that were consistent with the diagnosis formulated by 
physicians for three out of five data points. This suggests that it is possible to differentiate 
pathophysiological conditions by knowledge of functions using the proposed method despite the 
complexity of those case. 

In previous CDDSSs, such as ABEL [11], representing the state of the patient under complex 
circumstances required very precise knowledge of abnormalities. For example, in the case of data 
point 2 described in Table 3 and Table 4, it would be necessary to prepare concrete pathophysiological 
states, such as “inhalation of acids,” “carbon monoxide intoxication,” “acute kidney injury,” and 

“dehydration.” Subsequently, the causal relationships among those states must be noted. However, 

in the proposed method, by noting body states as the variable nodes and the pathophysiological 
functions that cause the interaction between those nodes (see Figure 3), differential 
pathophysiological conditions are generated. 

However, there are two data points (1 and 3) for which the evaluation software failed to produce 
the gold-standard graphs. Physicians tend to judge abnormality on the basis of the clinical situation, 
while the PPQ algorithm only generates interpretation graphs that are consistent with the tables of 
PPQ graphs. In each of these two data points, there was an abnormal combination of variable node 
values indicating that the functional factor node is abnormal, but the physicians consider it normal. 
In these instances, the PPQ algorithm indicated a function abnormality, but the physicians regarded 
it as normal because it did not require clinical intervention. For example, in data point 1, the gold-
standard graph nodes “lung diffusion capacity” and “pO2,” took the value “normal”, while the node 
“ventilation volume” took the value “high”. The physicians judged Func F10 as normal (Figure 5B) 
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because they thought it was not an abnormal clinical condition requiring extra intervention. However, 
the interpretation table of Func F10 indicates that if “lung diffusion capacity” is normal and 
“ventilation volume” is high, the function is normal only when “pO2” is high. Therefore, the 
algorithm generated interpretation graphs in which Func F10 was abnormal. Although the acid-base 
disturbance is a well-studied area [19], there are many models to understand acid-base, and they are 
not mutually exclusive [20]. In proposed cases, it may be necessary to incorporate models that 
consider the clinical situation. The fundamental problem is the difficulty of developing a model that 
considers all possible constructs.  

 
(A) 

 

(B) 

 
(C) 

 

 

 

Figure 5. (A) Gold-standard of data point 2, which is included in the output of the software. (B) Gold-
standard of data point 1, which is not included in the output of the software. (C) Legend of 

interpretation graph. 

Another problem was the sheer number of graphs generated by the software, which made it 
difficult to identify the gold-standard graphs. The prolific output, which would cause trouble for 
physicians seeking differential diagnoses, was caused by the smallness of the input information 
compared to the complexity of the graph. The output corresponds with the result of a previous study 
that described the difficulty of ranking correct diagnosis higher in atypical cases [18]. This problem 
could be ameliorated by improving the user interface. For example, grouping graphs with similar 
interpretations and displaying them on one simpler graph with fewer nodes might enhance the user 
experience. 

There are some limitations to this method. First, the granularity of the knowledge incorporated 
in the PPQ graph is arbitrary and needs to be selected according to the use case. Second, the values 
of variable nodes are discrete. The PPQ graph cannot provide information about degrees of deviation 
from the normal range in variable nodes. As a result, it fails to describe properly any pathological 
conditions for which it is the degree rather than the mere presence of deviation from the normal 
range that is significant. Finally, an evaluation based on only four case reports may not be sufficient 
to validate the PPQ algorithm. Further investigation is required for accurate validation of this method. 
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Despite these limitations, the proposed method can suggest differential pathophysiological 
conditions even if there are few test results. On the contrary, for example, the Stewart equation [21]  
[21] is an approach for analyzing acid-base disorders, but it cannot list up candidates if there are not 
enough test results that consist equations. Because the proposed method can list candidates with any 
number of inputs, if properly implemented, it can dynamically change the list of the candidates as 
physicians input more detailed information about patients. This may serve physicians in gaining more 
accurate insights on the pathophysiological diagnosis. 

Conclusion 

Comparing the expert opinion of three physicians to the candidate diagnosis obtained from the 
proposed method revealed that the graph-based algorithm can properly represent and differentially 
diagnose complex cases; past methods had difficulty representing such cases using the knowledge of 
causal relationships between pathophysiological states. The proposed method may contribute to the 
development of a CDDSS capable of suggesting differentiated pathological conditions to physicians 
dealing with complex cases. 
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