
 Applied Medical Informatics

Original Research Vol. 24, No. 1-2/2009, pp: 12 - 33

12

A Health-care Application of Goal-driven Software Design

Maria-Eugenia IACOB*, Diederik ROTHENGATTER, and Jos van
HILLEGERSBERG

1 University of Twente, School of Management and Governance, Department of Information
Systems & Change Management, Capitool 15, Postbus 217, 7500 AE Enschede.
E-mail(s): m.e.iacob@utwente.nl; d.c.f.rothengatter@utwente.nl; j.vanhillegersberg@utwente.nl

* Author to whom correspondence should be addressed; Tel. +31-(0)53-489 4134, Fax. +31-(0)53-
489 2159.

Abstract: In this paper we focus on goal engineering by addressing issues such as goal elicitation,
specification, structuring and operationalisation. Specification of business goals is regarded as a
means to raise the level of abstraction (and automation) at which business logic is incorporated in
model driven software design in the context of service oriented architectures. More specifically, the
proposed goal modelling approach consists of an abstract syntax (metamodel) and a concrete
syntax (graphical notation) for the specification of business goals. We also proposed a framework
for the goal-driven design of service-oriented software applications. In particular, we illustrate our
approach by means of a case study carried out in the healthcare sector and we explain the role
business goals (operationalised in the form of business rules) can play in software design. This
research also outlines a number of areas that have significant research potential.

Keywords: Goal modelling; Business Rules; Service Oriented Architecture; Model-driven design.

Introduction

Goal elicitation, modelling and analysis are often critical and complex processes. Business
people need therefore ways to express these goals as clearly and precisely as possible, both for their
own understanding and for communication with other stakeholders, such as requirements
engineers, process designers, business strategists and software developers. To date, there is no de
facto standard notation/language for describing goals, and they are often described in myriad of
ways going from informal and highly abstract pictures or text that lack a well-defined formal
semantics to very precise predicate logic formulae or mathematical functions. This leads to
misunderstandings, and makes it very difficult to provide tools for visualisation and analysis of
goals. It also makes impossible for organisations to trace back to business processes the causes of
success or failure in reaching organisational goals. Consequently, we believe that goal modelling and
analysis is critical in early design phases during the identification of requirements for information
systems that must support their achievement. Furthermore, in this paper we argue that in the
context of model-driven design, goal models may become an integral part of the design of these
systems.

Therefore, in this research we aim to develop a framework for goal engineering and a Goal
Modelling Language (GML) that has the following characteristics:
• It should be aligned with well-known existing goal modelling languages and methods.
• It should have a solid formal basis expressed in terms of an abstract syntax (i.e., a meta-model)

and concrete syntax (i.e., a graphical notation). Preferably, the concrete syntax should be
aligned with existing notations for goal modelling and with existing design languages notations.

• It should be easy to integrate with other special purpose specification languages such as
business rule specification languages process modelling languages, enterprise architecture
languages, and software design languages.

A Health-care Application of Goal-driven Software Design

13

• It should be attractive for a business audience, thus simple to learn, understand and use.
Therefore, the aim is to design a language that has an intuitive notation, a minimal set of
modelling concepts and relationships, and is, nevertheless, rich enough to have sufficient
expressive power.

• It should facilitate the documentation, communication, analysis and reasoning about goals.
In particular, we aim to illustrate and validate our goal modelling approach and framework in

practice by means of a case study carried out in the healthcare sector. This is meant to demonstrate
that (1) the defined language is expressive enough to capture various aspects of an organisation’s
goals but also to demonstrate that (2) our idea that goals are not just requirements for the service-
oriented software design but can become a part of it is practically feasible.

The paper is organised as follows: in the following section we briefly discuss the problems we
address in this paper. Then we provide a few classification criteria for goals and we investigate the
existing standards and languages for the formal specification of business goals. In the next section
we introduce our approach for goal modelling and we define GML’s concrete and abstract syntax.
This is followed by a presentation of our framework for combining goals with model-driven design
of service oriented systems. The main goal is to analyse in terms of method, specification languages
and tools the extent to which business goals can be incorporated in design models and become
eventually, at the platform specific level, an executable way of specifying business logic. This is
illustrated by means of a case carried out at a large Dutch hospital. Finally, in last section we draw
some conclusions and point out future work.

Goals: Definition, Classifications and Modelling

In this section we will give an overview of the topics central in this research, namely the goal
concept, goal classification criteria and existing goal modelling approaches.

Definition and classifications

According to [1], goals are high-level objectives of a business, organization or system; they
capture the reasons why a system is needed and guide decisions at various levels within the
enterprise.

Goals are important in several respects. Goals drive the identification of system requirements to
support them. Together with scenarios, they are the driving forces for a systematic requirements
elaboration process. Thus, a goal refinement tree provides traceability links from high-level strategic
objectives to low-level technical system requirements. Consequently, goal refinement provides not
only a natural mechanism for structuring complex requirements documents for increased readability
but also the right level of abstraction at which decisions makers can be involved for validating the
choices being made during system design or for suggesting other alternatives overlooked so far.
Goal models also provide a way to communicate system requirements to different stakeholders and
to detect whether they have conflicting goals with respect to the future system.

Goals in organizations are considered to be abstract concepts, like the high level objectives of
the business, organization, or system [2]. In this paper we define a goal as a desirable state to be achieved
by the composite system. We could distinguish in the literature concerning goals, goal-based
requirements engineering, and goal oriented analysis, several classifications of goals. The first
classification to be discussed here is the distinction between functional goals, and non-functional goals.
This distinction is proposed both by [3] and [4]. Functional goals are services a system delivers such
as the registration of a patient, the sending of an invoice, or the assignment of a resource to a
specific activity in a process. In most cases, functional goals can be assigned to a specific process,
actor, or organizational structure. Non functional goals do not apply to a specific process, actor, or
structure. This type of goals is of importance for the whole system. Examples are security,
performance, or scalability. Both the functional and the non-functional goals can in principle be
clearly defined, and thus are measurable. Another goal classification is the distinction between hard
goals and soft goals [5], or between operational goals and strategic goals [6]. An operational goal can
be accomplished by a given process. The strategic goal, however, cannot be achieved by a single

IACOB Maria-Eugenia, ROTHENGATTER Diederik, and HILLEGERSBERG Jos van

14

process. As stated in [6], soft-goals only refer to a part of the domain, not directly to a given
process. Soft-goals are used to specify high level qualitative objectives (e.g., customer satisfaction)
that are difficult to measure. Hard-goals clearly define a concrete state/target an actor desires to
achieve. For hard goals clear achievement criteria and (quantitative) measures are defined. Some
authors equate this classification to the functional versus non-functional distinction (see [7,8]).
However we assume in this taxonomy that hard goals are goals which can be determine by a
measure, whereas soft goals have no clear-cut criteria as to whether they are satisfied. In the
functional and non-functional classification, both types of goals are measurable. A third important
classification is on the level of goal assignment. Goals can be assigned to a system or organization,
to an actor in the system or organization, or to the relationship between two or more actors in the
system or organization. In [8] this distinction is defined as system goals and private goals, in [5] goals are
always defined between two or more actors in the system, and in [3] goals are most often identified
on the system level.

Goal elicitation strategies

In an organization goals can be elicited in a bottom-up or top-down fashion. Top-down elicitation of
goals can be regarded as refining and decomposing the system’s goals. The top-down approach
usually starts from analyzing the corporate strategy and translating it into a set of soft goals, which
are gradually refined and decomposed into operational level goals [6]. Bottom-up elicitation of goals
starts with the analysis of the individual autonomous actors/agents, identifies their “private”
operational goals and aggregates them into more abstract and higher level goals that concern the
whole organization/system. The former approach appears to require guess work and inventiveness,
since there is no systematic way for refining high level goals into concrete quantifiable goals.
Furthermore, high level enterprise goals do not always imply what should be the goal, for example,
of a concrete low level process [2]. In the latter approach, the challenge resides in the fact that goals
do not always comply with one another. Each stakeholder has different requirements and priorities.
Very often these interests are conflicting. While the first type of approach is typical/suitable for
organization models in which the control is imposed into a centralized and hierarchical fashion, the
second approach is more suitable for organizational models in which the control is distributed over
several units/departments. Nevertheless, common to both approaches is the fact that in the end
both approaches result into a detailed decomposition of goals in the form of a goal tree in which
leafs’ granularity is sufficiently fine to allow their operationalisation.

Both strategies for goal elicitation - top-down and bottom-up -are incorporated in Goal-
Oriented Requirements Engineering (GORE) methodologies. The top-down approach for example
is implemented in the KAOS methodology [8], whereas the bottom-up approach is implemented in
the TROPOS method [5].

As it will become clear from the presentation of a few goal modelling languages, three types of
relations essentially form the basis of the top-down and bottom-up approaches: decomposition,
abstraction and operationalisation. These relationships constitute essential mechanisms trough which
during goal specification one can go, on one hand, from one level of abstraction to the following
one (decomposition and abstraction), and, on the other hand, from goals specification to design
specifications (operationalisation).

Elicitation by decomposition is an informal technique for finding out sub-goals and
requirements by asking HOW questions about the goals which have been already identified [4,9].
Formal goal refinement patterns may also prove effective when goal specifications are formalized;
typically, they help finding out sub-goals that were overlooked but are needed to achieve the parent
goal. Elicitation by abstraction is an informal technique for finding out more abstract, parent goals
by asking WHY questions about operational goals/descriptions already available [9]. Note also that
refinement patterns when applied in the reverse way correspond to abstraction patterns that may
produce more coarse-grained goals. Elicitation by operationalisation is a formal or informal
technique to deriving pre-, post-, and trigger conditions (which are essentially constraints) on
system operations so as to ensure the fulfilment of the terminal goals (i.e., the leafs) in a goal tree.
The principle is to apply derivation rules whose premise match the goal under consideration [9]. Of

A Health-care Application of Goal-driven Software Design

15

particular interest for this research is the relationship between the (terminal) goals and constraint
constructs (such as business rules controlling processes). As stated in [8]:

“the link between goals and constraints is captured in the Operationalization meta-relationship
defined as follows:

Operationalization (C, G)

iff meeting constraint C is among the

operational ways to achieve goal G.

Thus, a constraint operationalising of a goal amounts to some abstract “implementation” of this
goal. In general a goal can be operationalised through several alternative combinations of
constraints; like Reduction, Operationalisation is an And/Or relationship. A meta-constraint here is
that a goal operationalised into constraints may not be reduced further.”

Existing goal modelling languages

Several language metamodels providing a conceptual foundation for the modelling of goals have
been proposed in the literature. Below, we briefly describe three of the most representative ones –
KAOS [8], Tropos [10] and BMM [11] and explain in which way we will further use these
approaches in our research.

The KAOS approach [8] has three components: a conceptual model for structuring
requirements models, with an associated textual specification language, a set of strategies for
elaborating requirements models in this framework and an automated assistant to provide guidance
in the acquisition process (automated support in following an acquisition strategy – built around a
requirements database and a requirements knowledge base). The main constructs defined in the
conceptual model are objects (agents, entities, events, and relationships), operations (performed by
an agent and change the state of one or more objects), actions: a mathematical relation over objects,
goals (a non-operational objective to be achieved by the composite system) and constraints (an
operational objective to be achieved by the composite system). Goals are classified according to
their pattern and their category. Five goal patterns are identified: Achieve, Cease, Maintain, Avoid,
Optimize. Furhtermore, KAOS distinguishes between the following goal categories: Satisfaction
goals, Information goals, Robustness goals, Consistency goals, Safety goals and privacy goals. The
strong points of KAOS are a solid formal basis, wide recognition in the academic community and
powerful support for goal analysis and reasoning. It is a framework that facilitates the reasoning
about goal satisfaction and the systematic building of complete, conflict-free goal based
requirements modelling [9]. Nevertheless, KAOS also fails to meet some of the requirements we set
in the introduction for a goal modelling approach, namely no “official” graphical notation has been
proposed 1 and it is not suitable for business audience, since it is too formal and requires a
background in discrete mathematics and formal logic.

The Tropos approach aims to guide the development of agent-based software systems [5].
Tropos incorporates goal modelling concepts (such as agents, goals, plans) through the phases of
software development. A pivotal role is assigned to requirements analysis when the environment
and the system-to-be are analyzed. The methodology covers five phases: (1) early requirements:
identification of stakeholders (with their objectives). Stakeholders are represented as agents,
objectives as goals; (2) late requirements: requirements analysis to fit the system-to-be in its
environment (including relation with actors in its environment); (3) architectural design: all system
actors are introduced and assigned to subtasks; (4) detailed design: detailed design of system agents,
including specification of communication and coordination protocols and (5) implementation: the
Tropos specification is transformed into a skeleton for implementation (via mapping of the Tropos
constructs to those of an agent programming platform). With respect to goal modelling, the Tropos
language and metamodel identifies the following core concepts: actor (represents a physical agent,
or a software agent, as well as a role or position), goal (in Tropos a distinction is made between
hard goals and soft goals), dependencies (links between actors, indicating that one actor depends on
another to attain some goal), plan (represents a way of satisfying a goal), resource (a physical of

1 There exists a commercial requirements engineering tool that implements the KAOS methodology and proposes a
graphical notation for KAOS as well (http://www.objectiver.com/).

IACOB Maria-Eugenia, ROTHENGATTER Diederik, and HILLEGERSBERG Jos van

16

informational entity), And/Or Decomposition (goal decomposition relation), means/end
relationship specifies a means (in terms of a goal, a plan or a resource) to satisfy the goal, and
contribution relationship (given a goal, the contribution relationship specifies the goals or plans or
resources that can contribute positively or negatively to its achievement; the measure of the degree
of contribution is expressed via the qualitative metrics +, ++, -, --). Compared to KAOS, Tropos
has the advantage of having an intuitive graphical notation, which makes it suitable for business
audience. Similar to KAOS, it has a solid formal basis and facilitates goal analysis. Furthermore,
there are several of open source tools (e.g., TAOM4e 2) available. The most notable disadvantages
of the Tropos approach are the unpractical modelling technique (models grow quite rapidly and the
overview is lost) and the weak/lack of support for constructs such as processes and business
rules/constraints.

The third approach – the Business Motivation Model (BMM) is a meta-model and a standard
for capturing business requirements that was finalized by the OMG in October 2007 [11]. More
precisely, BMM is one of the several OMG standards developed by the Business Modelling and
Integration Task Force (BMI-TF). Several BMM supporting tools are already available on the
market. BMM focuses on capturing semantically rich requirements that are useful for business
analysis, querying, impact analysis, change management, and business reasoning. Its main goal is to
capture business requirements in such a way that it clearly explains why the business wants to do
something, what it is aiming to achieve, how it plans to get there, and how it assesses the result. The
main constructs of the meta-model are Ends (what the business wants to accomplish), Means (how
the business intends to accomplish its stated ends), Assessment (who and how the means are
assessed against the ends) and Influencers (who or what judges/influences the assessment. Each of
these constructs is further refined/specialised into several other constructs, a few of which we wish
to emphasize. The first construct, the Ends, designates things the enterprise wishes to achieve,
namely Goals and Objectives. Among the Means there are things the enterprise will employ to
achieve those Ends, for example, Mission, Strategies, Tactics, Business Policies, and Business Rules.
The Influencers are internal and external factors that shape the elements of the business plans, and
the Assessments are evaluations made about the impacts of such Influencers on Ends and Means
(i.e., Strengths, Weaknesses, Opportunities, and Threats). Two important constructs that fall
outside the four above-mentioned categories are that business process and organisational unit.
Although, both are considered to be referenced elements defined externally (which supposedly fall
outside BMM’s scope), the BMM does include placeholders for them, to facilitate the integration
with other existing and emerging Business Process standards.

BMM has several obvious advantages such as those of being an open standard, very appealing
for business audience and easy to integrate with other OMG standards (e.g., SBVR [12], UML [13],
etc.). Nevertheless, BMM also does not come with a standard graphical notation, it has a broader
scope than just goal modelling and therefore it has too many concepts (some of which are unclear
or overlap with each other), it has no strong formal basis and does not address at all goal analysis
and reasoning issues.

We conclude this section with a comparison of these three goal modelling languages. The results
of this comparison are presented in Table 1 and Table 2. These tables provide a structured overview
of the defined concepts, and make the semantic differences between the languages explicit. For
example, empty cells in the table illustrate that a particular language does not explicitly support a
certain concept. The table may also provide an opportunity to reflect about the way each language
defines its own concepts and thus to consider alternative definitions. This is also how we exposed
the overlap between the three languages and extracted the essentials in order to create a basis for
devising our GML meta-model.

2 See also http://www.troposproject.org/tools.php.

A Health-care Application of Goal-driven Software Design

17

Table 1. Concepts comparison: KAOS, TROPOS, BMM

INTEROGATIVE CONCEPT KAOS TROPOS BMM
Who actor agent Actor specialised as agent,

position, role
organization unit

goal goal goal desired result
soft goal soft goal goal
hard goal hard goal objective
system goal system goal

Why

private goal private goal
behaviour action plan Course of action specialized as strategy,

tactic;
business process

How

constraint constraint Directive, business rule, business policy
What resource entity resource asset specialised as resource and fixed asset
When event event

Table 2. Relationship comparison: KAOS, TROPOS, BMM

RELATION KAOS TROPOS BMM
AndOr-
Refinement

ORreduction(goal, goal),
ANDreduction(goal, goal)

AND/OR
decomposition(goal,goal)

includes(desired result, desired
result)

Contribution conflict(goal,goal) contribution(goal,goal) amplify(goal,vision)
Association responsibility(agent, constraint)

concerns(goal,object)

wish(agent,goal)

means-end analysis(goal, plan,
actor, resource)

wants(actor, goal)

responsible(organization unit,
liability)
responsible(organization unit,
asset)
defines(organization unit, end)
defines(organization unit, course
of action)

Assignment perform(agent,action) executes(actor, plan) responsible(organization unit,
business process)

Operationalisation Operationalization (goal,goal) supports_achievement_of
(business rule, goal)
is_derived_from(business policy,
business rule)
quantifies(objective, goal)
makes_operative(mission,vision)
implements(tactic,strategy)

Enforcement ensuring(constraint, object,action) Dependency(goal,actor1,
actor2,plan,resource)

Governs(Businessrule/policy,
business process)

GML

Based on the comparison of the three goal modelling formalisms (KAOS, Tropos and BMM)
and on the requirements formulated in the introduction we are proposing a new language GML
that incorporates features of all three languages but also compensates most of their identified
shortcomings. In Table 3 one may find a summary of the concrete syntax attached to GML
together with the definition of the various language constructs.

IACOB Maria-Eugenia, ROTHENGATTER Diederik, and HILLEGERSBERG Jos van

18

Table 3. Summary of the concrete syntax

Name Definition Notation
Actor An entity that has strategic goals and intentionality within the

system or the organizational setting. An actor may represent a
physical, social or software agent as well as a role, position or
organisation [7]. Actors can be specialised as agents and/or roles. Actor

Goal A goal is a strategic and/or tactical objective to be achieved by the

composite system. These can be goals of organizational and
human actors. The goal concept can be specialised into soft (non-
operational) goals and hard goals. A goal has a type that can take
one of the following values: system goal, private goal, functional
goal, non-functional goal, etc. Besides the attributes inherited
from the parent concept “goal”, hard goals must be measurable,
and norms must be specified in relation with them.

Soft
Goal

Hard
Goal

Goal

Resource A resource represents a physical or an informational entity [7]. A

resource can be specialised as informational resource or physical
resource.

Resource

Behaviour A (collection of logically related) unit(s) of internal activities,
leading to a clear result (e.g., a set of products and/or services).
Exactly one actor is responsible for those activities. A complex
behaviour could be composed out of several sub-behaviours.
Often different actors are responsible for these different sub-
behaviours. For a consumer only the behaviour results (e.g.,
products and services) are relevant, while the required activities
delivering them is merely a black box, hence the designation:
internal. A behaviour can be specialised as business process, as a
tactic or as a strategy.

Business
process

StrategyTactic

Behaviour

Constraint A constraint is a statement that defines or constrains some aspect
(e.g., information, behaviour or structure) of a system. A
constraint can be further specialised as a business rule or as a
business policy.

Constraint

Business
Rule

Business
Policy

And/Or
junction

Part of a n-ary decomposition or operationalisation relation. A
junction is not a separate construct defined in the GML
metamodel.

And/Or
Decomposition
relationship

And/Or decomposition-combines AND and OR decompositions
of a root goal/behaviour into sub-goals/sub-behaviours,
modelling a finer goal/behaviour structure.

'or' decomposition

'and' decomposition

And/OR
Operationali-
sation
relationship

A constraint operationalizing a goal indicates that the constraint is
an abstract “implementation” of that goal (n.b., a constraint may
be a business rule or a business policy). In general a goal can be
operationalised through several alternative combinations of
constraints. Like decomposition, Operationalization is an And/Or
relationship. A meta-constraint here is that a goal operationalised
into constraints may not be reduced further.

‘or’
operationalisation

‘and’
operationalisation

A Health-care Application of Goal-driven Software Design

19

Table 3. Continuation
Name Definition Notation

Contribution
relationship

Given a goal, the contribution relationship is a directed
relationship that specifies the goals or behaviours or resources
that can contribute positively or negatively to its achievement.
The measure of the positive or negative degree of contribution is
expressed via the qualitative metrics +, ++, -, --.

--, -, +, ++

Acess
relationship

The access relationship models the access of behavioural
concepts to resources.

Assignment
relationship

The assignment relationship reflects the ownership of a goal,
behaviour, resource and/or constraint by an actor.

Constrain
relationship

The constrain relationship expresses the fact that a constraint
controls/influence/limits/defines some aspect of the behaviour
or a certain resource.

Figure 1 depicts the GML metamodel, which is the formal abstract syntax of the goal modelling

language we are proposing. As one can easily see five constructs together with the relationships
between them form the core of the language: goal, actor, resource, constraint and behaviour. Each
of the above mentioned constructs can be then further specialised.

assigned to

assigned to

constrained by

 constrains

and/or
operationalisation

Actor

Role

Agent

Behaviour

Business
process

Resource

Goal

Soft
Goal

Hard
Goal

Constraint

Informational
Resource

Physical
Resource

Strategy Tactic
Business

Rule
Business

Policy

and/or
decomposition

contribution

access

and/or
decomposition

assigned to

assigned to

constrained by constrains

contribution

contribution

Figure 1. GML metamodel

An example of a GML model is depicted in Figure 2.

IACOB Maria-Eugenia, ROTHENGATTER Diederik, and HILLEGERSBERG Jos van

20

Purchase
department

Replenish stocks

Improve
efficiency

Improve
processing

time

Reduce
costs

Optmise
processes

Increase
overloaded resources

Reduce
labour costs

Reduce
production

costs

Reduce number
erroneus orders

productID
is required

for each order

ArchiCom

Production
department

Reduce
material costs

rule 4
rule2 rule3rule1

-

-

+

Figure 2. GML model

One important advantage of GML to be stressed is its seamless integration with design
languages, in particular with the enterprise architecture language ArchiMate [14]. In order to
illustrate this idea we refer to Figure 3 in which an example is given of how goals and their
operationalisation as business rules can be incorporated in process and application design expressed
in ArchiMate.

Purchase department

Storage space

Create purchase
order

Check product
availability with

supplier

arange
 transportation

plan delivery

send
transport

order
Check stock

levels

send
purchase

order

Replenish stocks

Reduce number
erroneus orders

productID
is required

for each order

CRM
system

a product is
ordered only if

the stock level is
below minimum

Warehouse
administration

system

stock level
alert service

supplier
portal

agenda

schedulling
service

RuleService:
Order

product alert

RuleService:
Check ProductID

validity

Figure 3. Goal and architecture modelling

A Health-care Application of Goal-driven Software Design

21

In this particular case, one can see that business rules can be realized by rule services that are
subsequently used by business processes. In turn such rule services may use other application
services.

Goals and Service-Oriented Software Design

In order to react swiftly and coherently to changes, the agile SOA architecture must provide a
capability to capture how services realise business motivations (vision, goals, objectives, missions,
strategies, tactics, policies, regulations, etc.). One way to incorporate the business view in SOA
design is to express this view formally in terms of goals, refine them, translate them into business
rules (BR) and, then, integrate them in the design and composition of services. Using business rules
as vehicle to achieve this has the advantage of allowing the decoupling of the business logic
(expressed as goals) from business operations, such as business rules, processes and their
supporting applications. Furthermore, the effects of changes of the business logic (e.g., a new
business strategy, new laws and regulation or change of the internal business policy etc.) can be thus
isolated, affecting the business operations only to a limited and controllable extent (since business
goals can be modelled and maintained separately from rules and process models). In this way, it
becomes possible for organisations to explicitly manage and maintain goals and business rules,
which are no longer hidden and hard-coded in processes and applications [15], and to achieve
higher business process and software agility.

In this section we will explain that business rules are also very well positioned to be technically
combined with and incorporated in the model-driven design of SOAs, and, thus, to ensure goal
satisfaction by the system design. The idea of combining business rules with SOA (in particular in
relation to web service technology) has been already around for a while (e.g., [16,17]). Currently,
several commercial software platforms (e.g., the Oracle SOA suite, BEA Aqualogic, Web Methods
etc.) support the use of business rules for controlling services and the orchestration of services.
Thus, combining business rules with SOA is to some extent technically already possible. However
the BR specification languages used by these tools are in most cases proprietary and have significant
limitations. Furthermore, it should be noted that combining SOA and BRs is only possible at this
platform-specific level, which does not yet fulfil the promise of SOA being an architectural style in
which software design is driven by and fully aligned with the business needs. Fulfilling this promise
would assume that the (partial) specification of both business rules and goals is possible
independent of specific implementation platforms in an intuitively understandable manner,
accessible to the primary user/creator of these specifications: the non-technical business person.
The idea of developing means to specify business rules in nearly natural language is therefore
essential. To raise the level of abstraction at which business rules are specified, the availability of a
model-driven approach for business rules (as advocated by the MDA paradigm) is a prerequisite.

In this sense, the idea of applying the principles of model-driven design not only to software but
also to business rules has recently captured the attention of standardisation bodies such as the
OMG and W3C. Work is currently done to finalise standards for BR specification languages in all
MDA layers of models (e.g., SBVR [18], RIF [19], PRR [12]). Furthermore, results have been
reported with respect to the definition of model transformations between BR specifications
languages positioned in the different MDA abstraction layers (e.g., [20]). However, although the
two model-driven approaches (for business rules and for software design) follow the same
principle, they seem to evolve in parallel and somewhat independently from each other. We argue
that they must be combined and complemented with goal specification techniques, which will
eventually result into a model-driven approach for SOA in which business rules constitute the
expression of goals as reflection of the business logic and through which the decoupling of the
business logic from business operations and from applications can be effectively achieved. Thus, in
the remainder of this section we propose a framework for the integration of the SOA, model-
driven design (MDD), business rules and goals and we outline some open research directions that
emerge as a consequence of this integration.

Besides controlling the orchestration of services, one other way to use business rules in the
context of SOA is to provide and invoke them in the form of independent web services. Thus, rule engines may

IACOB Maria-Eugenia, ROTHENGATTER Diederik, and HILLEGERSBERG Jos van

22

expose the effect of business rules resulting in decision or derivation (web) services as depicted in
Figure 4.

Figure 4. Business rules exposed as a service

Model-driven and goal-based design

The combination of MDA with SOA design is an area that has been extensively researched in
the Freeband A-MUSE project (http://a-muse.freeband.nl), which has proposed and validated a
design methodology in this sense [21]. As sketched already in the two previous paragraphs, new
interesting areas of research emerge from the combination of the two aforementioned paradigms
and business rules, which could reuse and extend the Freeband A-MUSE results. As we have
shown, business rules can be derived as the operationalisation of an organisation’s goals and
strategies. As such, rules may not just play a role in capturing business goals but also in
incorporating them in the design of application services and in the design and control of the service
orchestration. Furthermore, if they resulted as operationalisation of some non-functional goal they
could also play a role in specifying and controlling the non-functional properties of the resulting
composite service (e.g., performance). Furthermore, we argue that this should be possible
throughout the whole stack of MDA models, from high level computation-independent models to
platform-specific models. In MDA, model transformations play a central role. Transformations are
used to maintain relationships between models at different abstraction levels in the MDA model
stack (see the left-column of Figure 5). Typically, one of the languages from OMG’s Query-View-
Transformation (QVT) standard [22] is used as the language to specify these transformations. The
middle column of Figure 5 (which is a “service-oriented” version of MDA) illustrates this. As in the
top-down transformations information is added (i.e., the lower-level models are refinements of the
higher-level models), it is still unclear to what extent these transformations can be performed fully
automatically.

In Figure 5 a distinction has been made between the design space (the left column), with models
expressed in design languages such as UML, business process modelling languages or architectural
description languages, and the goal&business rule space (the right column), with goals/rules expressed
in special-purpose specification languages (see Figure 5 for examples of such languages). The

A Health-care Application of Goal-driven Software Design

23

integration of design models and rule specifications can also be seen as a special type of (horizontal)
model transformations – model merging [23].

Platform-
independent

BR

Platform-
independent

BR

BR in (semi-)
natural language

Platform-
independent

model

Platform-
independent

service design
model

Service
architecture

Platform-

design model

Platform-
specific service
design model

code
Service

code

Platform
independent

model

Platform
independent

model

Computation
independent

model

Platform-
specific
model

Platform-
specific
model

code
Application

code orchestration
Service

orchestration

Platform-
specific /

executable
BR

Platform-
specific /

executable
BR

+

+

+

ArchiMate
Use cases

ISDL
BiZZdesigner

ARIS
BPMN

UML

UML

WSDL
Java/EJB

C#

BPEL
BPML

Goals

RIF
ILOG
IRL
SRL
Blaze
Schematron

PRR
OCL
OWL
RuleML
SWRL

SBVR

KAOS
TROPOS
BMM
ArchiMate+GML

MDA SO-MDA G&BR-MDA

G&BR spaceDesign space

Platform-
independent

BR

Platform-
independent

BR

BR in (semi-)
natural language

Platform-
independent

model

Platform-
independent

service design
model

Service
architecture

Platform-

design model

Platform-
specific service
design model

code
Service

code

Platform
independent

model

Platform
independent

model

Computation
independent

model

Platform-
specific
model

Platform-
specific
model

code
Application

code orchestration
Service

orchestration

Platform-
specific /

executable
BR

Platform-
specific /

executable
BR

+

+

+

ArchiMate
Use cases

ISDL
BiZZdesigner

ARIS
BPMN

UML

UML

WSDL
Java/EJB

C#

BPEL
BPML

Goals

RIF
ILOG
IRL
SRL
Blaze
Schematron

PRR
OCL
OWL
RuleML
SWRL

SBVR

KAOS
TROPOS
BMM
ArchiMate+GML

MDA SO-MDA G&BR-MDA

G&BR spaceDesign space

Figure 5. A model-driven view on the integration of service design enhanced with goals/business

rules and their specification languages

As the Figure 5 suggests, there is a strong symmetry between the design space and the rule space:
for any design model, there may be a corresponding rule set specification. Furthermore, a rule
specified at a higher abstraction level may be refined (i.e., transformed) into a rule (set) specification
at a lower abstraction level.

In summary, the following types of model transformations are relevant (see Figure 5):
• Vertical model-to-model and model-to-code transformations in the design space as identified in

the MDA.
• Horizontal model merging transformations between design models and goal/rule

specifications, either at the architectural, platform-independent or platform-specific level.
• Vertical transformations in the goal/rule space going from (and refining) goals into rules

expressed in near-natural language down to executable rule specifications.
In this section we have presented our vision on what is needed in order to be able to design

service-oriented applications in a model-driven and goal-based way.
The framework we defined also led us to a number of areas having significant research potential.

In particular, we believe more work is needed, on one hand, in the area of integration between
design languages and BR specification languages in all layers of the MDA stack and, on the other
hand, between goal specification languages and rule languages. Furthermore, we argue that business
rules could play a significant role in the operationalisation of non-functional goals and in the
specification and analysis of non-functional properties of services. Also, although current MDA,
SOA, BRMS and other modelling tools can be used to partly support the framework presented in
this section, several integration issues and gaps can be identified:
• Integration between goal modelling and business rule specification languages and tools is still

missing.
• Integration between design and BR specifications has been only partly realised, and only at the

platform-specific level (in software platforms, such as, Oracle SOA suite or IBM’s Websphere,
etc.).

IACOB Maria-Eugenia, ROTHENGATTER Diederik, and HILLEGERSBERG Jos van

24

Finally, one important issue to be addressed is the development of more methodological and
tool support for the specification of model transformations between the different layers of models
in the MDA stack.

The HNP case at the Medical Spectrum Twente

In order to validate the proposed goal modelling approach we carried out a case study in a
health care setting. Goal of this case is twofold: first to validate the GML language in a real case
situation and second to illustrate the framework presented in the previous section.

Case presentation
For this case study, we selected a mid-size ‘top-clinical’ hospital located in the east of the

Netherlands. This hospital supplies approximately 820 beds for the region, divided over five
locations. We focused on the diagnosis and treatment process of Hernia nuclei pulposi (HNP) or
“spinal disk herniation”. In this case process, several specialists work together, in order to fulfill the
complete patient treatment. Coordinating and collaborating in this process is a major challenge,
considering the different measures for optimal performance (e.g. patient satisfaction, costs,
treatment quality, and through put time). The selected patient treatment process, which we
observed via interviews, participation, and group discussions, over a period of 3 months, is based
on a standardized clinical trial. A clinical trial is a instrument used to organize the multi-disciplinary
care process for the patient, in order to manage and improve the quality of the treatment process.

Of all patients diagnosed with HNP, only 5 to 6 percent receive medical treatment. Yearly 600
patients are treated in this hospital. The average treatment time (or throughput time) varies between
four to twelve months before full recovery, depending on the medical background, and the physical
state of the patient. The actual time spend by the patient within the hospital is limited to
approximately three fulltime days. As already stated, the HNP treatment process in this hospital
department is standardized according to a uniform clinical trial. This standard trial is multi-
disciplinary care plan including all key interventions (i.e., interventions that are applied to 80% of all
patients) and targets. In the HNP treatment, disciplines involved are, next to general practitioners,
physiotherapists, anesthetists, neurosurgeons, radiologist, lab-assistants, administrative staff, and
nursery staff.

For the application of our goal analysis method we zoom in on a crossing of two processes of
two involved disciplines in the HNP treatment; the neurosurgery department, and radiology
department. Both these departments can be considered value shops, with a typical value shop
process (problem finding and acquisition, problem solving, choice, execution, and control /
evaluation).

The main department involved with this HNP procedure is the neurosurgery department. This
department is responsible for initiating the clinical trial and the administrative settlement. In this
case study we focus on the operations of both the neurosurgery department and the radiology
department. The issue in this case study is the automation and improvement concerning the
ordering, requesting, and planning of the medical diagnostics as provided here by the radiology
department, for a treating specialism (here the neurosurgery department).

The current flow of the basic process is initiated by either a general practitioner, or a specialist
in a hospital, diagnosing a patient HNP. After this diagnosis, a complex treating process is started
to heal the patient from his injury. At a certain point in the process the neurosurgeon forwards the
patient to the radiologist for a scan of the internals of the patient. This operation can comprise
several scans, ranging from a simple ‘bucky’ scan (Röntgen scan) to the more complex CT scans or
MRI scans (more detail provided at the description of the radiology process). Here the patient is
send to the radiology secretary to make an appointment for the advised scan. The response for this
request for a scan can be given directly (as an scheduled appointment), or with an acknowledgment
for the request (upon which the scheduled appointment is communicated later with the patient).
Thus, in this process there is a clear distinction between requesting and scheduling. On the day of
the scan, the patient registers at the central radiology desk, and is scanned after a short period of
time. The radiologist checks the quality of the scan, and the scan is being processed into the system.

A Health-care Application of Goal-driven Software Design

25

After the radiologist concludes with a final diagnosis, the results are send to the requesting
department (i.e. the neurosurgery department). Now the neurosurgeon can finalize his diagnosis,
and decide whether to perform medical surgery. After the surgery, the patient is put up for post
surgery treatment, and outpatient recovery. At this point the patient should be fully recovered.

For case analysis we will focus on the interaction between the neurosurgery department, and
the radiology department. Problems that are encountered in this current process flow are:
• Sub-optimal usage of the radiology resources
• Long waiting lists for radiology scans
• Difficulties for requesting and scheduling patient treatment
• Unknown costs for the neurosurgery per treatment per patient
• No transparency and flexibility in the radiology planning process

Both the neurosurgery process as well as the radiology process are described in more detail
below.

The case description will be provided by means of a process model of both the neurosurgery
treatment process of HNP, and the process model of the medical diagnostics as provided by the
radiology department.

The process overview of the clinical trial can be modeled as in Figure 6. The modelling
language we used for this formal specification is The Open Group’s standard ArchiMate [14] (as
implemented in the BiZZdesign Architect tool [24]). In this overview five phases are involved,
ranging from the diagnosis to the final recovery. Only the medical surgery and the post-surgery
treatment are fully conducted within the hospital (clinical). The actors involved in each process part
are linked to each step.

diagnosis outpatient
screening

medical
surgery

post-surgery
treatment

outpatient
recovery

general
practitioner

specialist

gp's
administration

physiotherapistnurse

hospital
administration

neuro-
surgeon

anesthetist

radiologist

lab-
assistant

Figure 6. Overview process model HNP treatment

When zooming in on the outpatient screening (second module in the process overview), we get
the overview depicted in Figure 7. In this part of the treatment 10 major process steps can be
identified, ranging from anamnesis (collecting patient information) to the final preparation and
check on the patient file.

anamnesis and
observation

conduct medical
diagnostics

informing
patient

recheck
lab results

determine
medication

discuss with
peer specialists

take care of
patient transfer

patient mobility
instruction

nutrition
instruction

prepare and
check patient file

neuro-
surgeon

outpatient
screening

Figure 7. Overview process model outpatient screening, HNP treatment

IACOB Maria-Eugenia, ROTHENGATTER Diederik, and HILLEGERSBERG Jos van

26

Finally, when zooming in on the ’conduct medical diagnostics’ process module, as part of the
outpatient screening, the process model can be displayed as in Figure 8. In this process, two
diagnostic operations are performed; the lab (e.g. body fluids) testing, and the radiology (body
imaging) testing.

determine medical
test to be requested

send request for
medical test to radiology

send request for
medical test to lab

receive
results

analyse
results

diagnose

check billing
information

pay
radiology

conduct medical
diagnostics

Figure 8. Medical diagnostics process, part of outpatient screening, part of HNP treatment

In both the lab and radiology testing, basically, the requests for testing are accepted (or denied),
the test itself is scheduled, the diagnostics are performed, and the test results are processed. After
this step, the results are sent to the requesting department (in this case the neurosurgery).

The second viewpoint in this clinical trial, we zoom in on the radiology department, as part of
the HNP treatment process. In this paper we will focus on one location of the hospital (out of 3
radiology departments in the overall hospital group). In total, this hospital group conducts yearly
over 200,000 radiology procedures of three types: Radiographies, Magnetic Resonance Imaging
(MRI), and Computed Tomography (CT).

The radiology department process is depicted in Figure 9 and it starts from the moment the
patient is referred to by another department (in our case study: the neurosurgery department). Next
the patient is tested by means of a body scan. Hereafter, the results from the tests are processed and
sent to the requesting department. Finally the diagnosis process is finished.

process request
for scan

fi ll out
safety form

schedule
scan

secretary

patient

radiologist

request and plan
radiology scan

patient
referral

reg ister at desk

pa tient

process
pa tient card

ap prove
sa fety form

w a it in
w a i ting room

reg is ter
pa tient

run sca n

process
sa fety form

fin alize
sc an

se creta ryrad iolog is t

conduct radiology
scan

retrieve digital
scan images

radiologist

process scan
diagnosis in

speech software
process audio

dianosis

secretary

process scan
results

update
patient record

inform requesting
specialism

Billingbill

scan
request

scan
notification

patient
record

send results

Figure 9. Radiology department process

This whole overview of the radiology process model compromises the outpatient screening part of
the neurosurgery process model. Due to space limitations we will only zoom in the last sub-process,
’send results’, which will be later used again. Al other processes are described in detail in [25]. The
actor involved in the sub-process, ’send results’ is the secretary.

This process model depicts the general setting of the treatment of a patient, when send from the
neurosurgery to the radiology department.

At this intersection of both the neurosurgery treatment of HNP, and the radiology process of
body imaging, we applied our goal analysis method. On this intersection, actors from both process
chains are involved, with their corresponding goals. As already mentioned, analyzing these goals can
be done as well with a bottom-up approach as in a top-down fashion. Both these analyses will be
presented in the following paragraph.

A Health-care Application of Goal-driven Software Design

27

update
patient record

inform requesting
specialism

Billing
bill scan

request

scan
notification

patient
record

send results

Figure 10. Send results process

Goal elicitation and system design

When conducting the goal elicitation in a bottom-up approach, first the stakeholders are to be
identified. As explained before, stakeholders can be defined as actors who have an interest in the
issue under consideration, who are affected by the issue, or who - because of their position - have
or could have an active or passive influence on the decision making and implementation processes
[26]. In the case under consideration, the stakeholders identified are the neurosurgeon, the
radiologist, the radiology administration and the patient. The goal analysis is performed via
interviews with the relevant stakeholders and group sessions discussing the results from the
individual interviews.

Figure 11 displays an overview of bottom-up goal model with the identified stakeholders along
with their private and composite (inter-actor and intra-actor) goals.

Figure 11. Tropos goal model outpatient screening

This graphical model is constructed with the aid of a software tool in which the Tropos
methodology is embedded; TAOM4E [27-29]. In this model, the circles represent the identified
actors, the rounded rectangles the hard goals, and the cloud shapes represent the soft goals. When a
goal is situated between two actors A and B, this means actor A depends on actor B for attaining
this goal. The same model has been expressed using the GML language and can be found in Figure
12.

For the sake of simplicity in the GML model we only represented the assignment of goal to
actors and we chose to omit the dependencies relationships from the Tropos model. Nevertheless
these could be modeled as well in GML using the pattern shown at the bottom of Figure 13.

Since a dependency in Tropos is a link between actors, indicating that one actor depends on
another to attain some goal, in GML the same thing is expressed even more precisely by indicating
which behaviour (in the case of the given example “schedule scan”) of the dependee (the radiologist)
contributes to the achievement of the goal (“get control over scan scheduling”) of the depender (the
neurosurgeon) for which the actors the dependency relation was established.

IACOB Maria-Eugenia, ROTHENGATTER Diederik, and HILLEGERSBERG Jos van

28

radiologist neuro surgeon

administration
patient

maximize
profit

optimal use
of resources

low planning
workload

spending
minimum

time in hospital

full system
integration

maintain control
over scan
scheduling

high quality
treatment for
HNP patients

make multiple
appointments

at once

Cheaper treatment
for HNP

planning
transparancy

quick processing
scans for HNP

patients

get control
over scan

scheduling

get inside details
on costs

administration
should handle

scheduling

Figure 12. GML goal model outpatient screening

neuro surgeonradiologist

schedule
scan

get control
over scan
scheduling

Figure 13. Tropos dependency modelled in GML

In the HNP case study, several goals can be identified. The efficiency of the HNP patient scan
planning and scheduling at the radiology department is critical for the performance of the radiology
department. The goal of the radiologists is to maximize the utilization of the resources (like MRI
scanners), while guaranteeing best quality to their patients. At the same time the neurosurgeons
want their patients diagnosed as fast as possible. For this they want insights and editing rights in the
radiology schedule. Next to this, it is important for the neurosurgery department to have clear view
on the costs attached to treating patients, and service their patients with the highest level of quality
at low costs (thus maximize its profits). The administration prefers a fully integrated system (the
radiology system, the neurosurgery system, and the hospital information system are not fully
integrated), and a work load evenly spread over the whole day. The goal of the patient is to make
multiple appointment (e.g. lab tests, radiology scans) at the same time, and have them succeeding.

In order to illustrate our framework we choose to focus on the neurosurgeon, and in particular,
on its goal “maximize profit”. The first step in applying our method is to decompose and refine this
goal. At the CIM level a goal tree model is proposed (see Figure 15), using the and/or decomposition
relation of the GML language. This model also shows the other goals of this actor and how the
sub-goals derived from “maximize profit” may contribute to other goals as well. Furthermore,
some leafs in this goal tree are operationalised by means of business rules. Each of these business
rules constrain some behaviour (in this case some business processes assigned either with the
neurosurgeon (“check billing information” and “send request for medical test to radiology”) or with
the radiology (“billing”).

At this level, business rules are specified in (near-) natural language. Note that the chosen
example contains both rules for controlling the process flow (e.g., Biasing algorithm) and rules that

A Health-care Application of Goal-driven Software Design

29

can be implemented and used as independent rule services (e.g., the calculation of tariffs based on
processing time).

At the PIM level we focus on how the tariff calculation business rule constrains the “send
results” process and show how this part of the goal tree can be refined and transformed into a
behaviour model expressed in the ArchiMate modelling language which has been extended with the
GML constructs (see Figure 14).

Finally, at the PSM level, the previous process model can be transformed into the BPEL
specification depicted in Figure 16 and realized using the Oracle SOA suite that integrates among
others a BPEL engine with a BR authoring tool, engine and repository. Please note that the in the
“send results” process the calculation of the amount that has to be billed has been externalised by
invoking a so-called decision service (e.g., “DecisionServiceCalculateAmountBilledPL”). This
decision service wraps the business rules stored in a dictionary in a rule repository.

update
patient record

inform requesting
specialism

Billing

different tarifs apply to scan requests
depending on the processing time:
-within 4 working days regular tariff;

- between 5 and 7 days 80% of regular tariff;
- over 7 days 50% of regular tariff

bill
scan

request

scan
notification

patient
record

send results

Figure 14. The “send results” process annotated with the tariff calculation business rule

maximize
profit

minise number
of tests

more patients
treated

minimise duration
of post surgery

treatment

minimise the waiting
time for scan results

implement a
penalty/reward

system
make agreements
about the service

level with radiology

implement
load balancing

system for
scan requests

neuro surgeon

optimal use
of resources

radiologist

get control
over scan
scheduling

Cheaper treatment
for HNP

maintain control
over scan
scheduling

different tarifs apply to scan requests
depending on the processing time:
-within 4 working days regular tariff;

- between 5 and 7 days 80% of regular tariff;
- over 7 days 50% of regular tariff

for each scan request
processed before 4
working days the

radiodogy will receive
a 5% bonus

for each scan request
processed after 4
working days the

radiodogy will receive
fine of 5% /day

Biasing
algorithm

check billing
information

send request for
medical test to radiologyBilling

get inside details
on costs

high quality
treatment for
HNP patients

planning
transparancy

+

+
+

-

+++

++

Figure 15. Neurosurgeon goal tree

IACOB Maria-Eugenia, ROTHENGATTER Diederik, and HILLEGERSBERG Jos van

30

Figure 16. BPEL process

Conclusions

In this paper we have proposed a goal modelling approach and defined the abstract syntax and
the concrete syntax of a modelling language (GML) for the specification of business goals. The
conceptual foundation of the GML language is the result of an analysis of the metamodels of three
representative languages that have been proposed in the literature: KAOS, Tropos and BMM. This
means that GML is aligned with well-known existing goal modelling languages and methods.
Furthermore, the GML syntax is easy to integrate with design languages such as business process
modelling languages (e.g., BiZZdesigner [30]), architecture languages (e.g., ArchiMate [14]) and

A Health-care Application of Goal-driven Software Design

31

business rule specification languages (e.g., SBVR [12]). Simplicity was also an important principle
that we have followed in the design of GML. Subsequently, GML is suitable for non-technical users
since it is intuitive and it has a limited number of modelling concepts and relationships. They are,
nevertheless, sufficient to ensure that GML has the enough expressive power.

Next to GML, we have proposed a model-driven framework for the goal-driven design of
service-oriented software applications showing how GML specifications could be used during
software design. We also provided an example to illustrate this framework and to demonstrate the
role goals operationalised by means of business rules can play in the context of MDD of SOAs.

This research also pointed out a number of areas having significant research potential. In
particular, we believe more work is needed in the following areas:
• Development methodological support for the elicitation and refinement of goals. In this sense

we believe that the development of a goal-ontology and of a catalogue of goal refinement
patterns may play an important role.

• Development goal analysis techniques, in particular in the area of non-functional goals but also
in relation with reasoning techniques concerning goal achievement.

• Integration between design languages and BR specification languages in all layers of the MDA
stack. Furthermore, we argue that the operationalisation of goals by means of business rules
could play a significant role in the specification and analysis of non-functional properties of
services and therefore should be further investigated.

• Implementing modelling tool support for GML, possibly by extending ArchiMate
[14]/Architect [24] with support for the GML constructs.

• Extending ArchiMate/Architect with support for the specification of rules in nearly natural

language (e.g., in SVBR)
• Defining model transformations between ArchiMate+GML and platform specific languages

(e.g., BPEL combined with a rule specification language).
• Investigating the relation between our approach for goal modelling and Multi-Agent-System

design, which are very well positioned to handle the negotiation of actor coordination terms
and decentralized and dynamic scheduling coordination problems (that can not be solved
optimally with classical operations research techniques).

References

1. Anton AI, McCracken WM, Potts C. Goal decomposition and scenario analysis in business
process reengineering, Proceedings of the 6th international conference on Advanced
information systems engineering table of contents, 1994, pp. 94-104.

2. Anton AI. Goal-based requirements analysis, Second IEEE International Conference on
Requirements Engineering (ICRE `96) , Colorado Springs, Colorado, pp. 136-144, 15-18 April
1996.

3. Keller SE, Kahn LG, Panara RB. Specifying Software Quality Requirements with Metrics.
System and Software Requirements Engineering 1990, p. 145-163.

4. Kueng P, Kawalek P. Goal-based business process models: creation and evaluation. Business
Process Management Journal 1997;3(1):17-38.

5. Mylopoulos J, Chung L, Yu E. From object-oriented to goal-oriented requirements analysis,
Communications of the Acm 1999;42(1):31-37.

6. Soffer P, Wand Y. On the notion of soft-goals in business process modelling, 2005.
7. Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J. Tropos: An Agent-Oriented

Software Development Methodology. Autonomous Agents and Multi-Agent Systems
2004;8(3):203-236.

IACOB Maria-Eugenia, ROTHENGATTER Diederik, and HILLEGERSBERG Jos van

32

8. Dardenne A, Lamsweerde A. van, Fickas S. Goal-directed requirements acquisition. The
Science of Computer Programming 1993;20(1-2):3-50.

9. Lamsweerde A. van. Goal-Oriented Requirements Engineering: A Guided Tour, In:
Proceedings of RE'01 - 5th IEEE International Symposium on Requirements Engineering,
Toronto, 2001, IEEE Press, 2001, p. 249-263.

10. Bertolini D, Perini A, Susi A, Mouratidis H. The Tropos Visual Language. A MOF 1.4
compliant metamodel. AgentLlink III AOSE TFG 2, 2005 [cited 2009 April]. Available from:
URL: http://www.troposproject.org/papers_files/tropos.pdf.

11. Object Management Group, Business Motivation Model (BMM) Specification dtc/07-08-03,
September 2007[cited 2009 April]. Available from: URL: http://www.omg.org/docs/dtc/07-
08-03.pdf.

12. Object Management Group, Production Rule Representation: Request for Proposal, br/2003-
09-03, Sept. 2003 [cited 2009 April]. Available from: URL: http://www.omg.org/docs/br/03-
09-03.pdf.

13. Object Management Group, UML 2.0 OCL Specification, ptc/03-10-14, Oct. 2003 [cited 2009
April]. Available from: URL: http://www.omg.org/docs/ptc/03-10-14.pdf

14. The Open Group, Technical Standard ArchiMate® 1.0 Specification, ISBN: 1-931624-80-1,
Document Number: C091, Published by The Open Group, February 2009.

15. Hermans L, Lemahieu W, Vanthienen J. Real agility and transparency requires a combination of
BPM/SOA, EDA and BRA, In Proceedings of the 6th European Business Rules Conference,
Düssseldorf (Germany), Jun. 18-19, 2007.

16. Geminiuc K. A Services-Oriented Approach to Business Rules Development, SOA Best
Practices: The BPEL Cookbook (Oracle white paper), retrieved on April, 6-th, 2008. Available
from: URL: http://www.oracle.com/technology/pub/articles/bpel_cookbook/geminiuc.html.

17. Rosenberg F, Dustdar S. Business Rules Integration in BPEL – A Service-Oriented Approach,
in Proc. 7th IEEE International Conference on E-Commerce Technology (CEC’05), Munich,
Germany, July 2005.

18. Object Management Group, Semantics of Business Vocabulary and Business Rules
Specification, OMG Adopted Specification, 2006.

19. RIF Working group. [online series] [cited 2009 April]. Available from: URL:
http://www.w3.org/2005/rules/wiki/RIF_Working_Group.

20. Linehan MH. Semantics in Model-Driven Business Design, IBM T.J. Watson Research Center,
New York, 2006.

21. Almeida JPA, Iacob ME, Jonkers H, Quartel D. Model-Driven Development of Context-
Aware Services, In: Frank Eliassen, Alberto Montresor (Eds.) Distributed Applications and
Interoperable Systems: 6th IFIP WG 6.1 International Conference, DAIS 2006 Lecture Notes
in Computer Science, Volume 4025, pp.213-227, 2006, ISSN: 0302-9743, Springer-Verlag.

22. Object Management Group, Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, Final Adopted Specification ptc/05-11-01. [cited 2009 April]. Available from:
URL: http://www.omg.org/docs/ptc/05-11-01.pdf.

23. Kolovos DS, Paige RF, Polack FAC. Merging Models with the Epsilon Merging Language
(EML). Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2006;4199:215-229.

24. BiZZdesign B.V., Tool Manual Architect, Enschede, October 2006.
25. Iacob ME, Rothengatter D, Hillegersberg J. van. Goal specification and analysis in value-shop

systems, Technical report, Telematica Instituut, January 2009.
26. Varvasovszky Z, Brugha R. How to do (or not to do)… A stakeholder analysis. Health Policy

and Planning 2000;15(3):338-345.
27. Morandini M, Penserini L, Perini A. Automated Mapping from Goal Models to Self-Adaptive

Systems. ASE 2008:485-486.

A Health-care Application of Goal-driven Software Design

33

28. Penserini L, Perini A, Susi A, Mylopoulos J. High variability design for software agents:
Extending Tropos. ACM Transactions on Autonomous and Adaptive Systems 2007;2(4):article
no 6.

29. Perini A, Susi A. Developing Tools for Agent-Oriented Visual Modeling. MATES 2004: 169-
182.

30. Berg H. van den, Franken H, Jonkers H. Handbook Business Process Engineering, BiZZdesign
Academy, 2008.

© 2009 by the authors; licensee SRIMA, Cluj-Napoca, Romania.

