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Abstract 
Over the past decades, gene expression microarrays have been used extensively in biomedical 
research. However, these high-throughput experiments are affected by technical variation and 
biases introduced at different levels, such as mRNA processing, labeling, hybridization, scanning 
and/or imaging. Therefore, data preprocessing is important to minimize these systematic errors in 
order to identify actual biological changes. The aim of this study was to compare all possible 
combinations of two normalization, four summarization, and two background correction options, 
using two different foreground estimates. The results shows that the background correction of the 
raw median signal and summarization methods used here have no impact in downstream analysis. 
In contrast, the choice of the normalization method influences the results; the quantile 
normalization leading to a better biological sensitivity of the data. When Agilent processed signal 
was considered, regardless of the summarization and normalization options, there were consistently 
identified more differentially expressed genes (DEG) than when raw median signal was used. 
Nevertheless, the greater number of DEG didn’t result in an improvement of the biological 
relevance. 
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Introduction 

Over the past decades, microarray technologies have become routine tools in biomedical 
research with a broad range of applications in molecular classification of cancers [1-3], discovery of 
biomarkers [4-6], identification of novel drug targets [7, 8] and prediction of disease outcome [9-
11]. The DNA microarray technology is based on the ability of the nucleic acids to form hydrogen 
bonds with complementary sequences (DNA, PCR products, oligonucleotides) chemically attached 
to a solid surface, usually a microscope slide or silicon chip. These technologies provide means of 
simultaneous measurement of mRNA levels of tens of thousands of genes, allowing the detection 
of changes in gene expression between two or more conditions (disease states, treatment with 
different drugs, etc). However, due to different handling procedures and experimental artifacts, 
noise and bias are often introduced in microarray experiments and these systematic errors are 
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reflected as differences in gene expression profiles. Therefore, data preprocessing is crucial for 
minimizing such systematic errors to identify actual biological changes.  

Currently, there are many available gene-expression microarray platforms that differ in array 
production, type of targets onto the slides or dye selection. However, just a few technologies have 
arisen as leaders in the field due to their reliability and widespread use; cDNA microarrays, high-
density oligonucleotide microarrays (Affymetrix), and long oligonucleotide microarrays (Agilent) 
[12]. The preprocessing methods depend on the type of microarray platform used but, in general, 
consist of three steps: background correction, normalization and summarization. The selection of 
the methods for each step can affect microarray results. While preprocessing approach for cDNA 
microarrays [13-15] and Affymetrix high-density oligonucleotide microarrays [16-18] were 
extensively studied, not so much attention is paid to Agilent microarrays.  

In this study, different preprocessing strategies for Agilent microarray data were compared in 
terms of their ability to identify differentially expressed genes and to improve the biological 
sensitivity of the results. 

Material and Method 

Samples Collection and Processing 

Peripheral blood collected from 29 breast cancer patients (BC) and 7 healthy women (CTR) was 
used for this study. The study was approved by the ethical committee of the University of Medicine 
and Pharmacy “Iuliu Hatieganu” Cluj-Napoca and all subjects signed an informed consent. The 
total RNA was isolated from nucleated cells according to the classical protocol with TriReagent and 
purified with RNeasy Mini kit (Qiagen, Germany). The integrity of RNA samples was evaluated 
with the Bioanalyzer 2100 (Agilent Technologies, USA). All samples had the RNA Integrity 
Number (RIN) greater than 8 and were further considered for the microarray experiment. 

Microarray Assay 

Cy3-labeled microarray probes were synthesized from 100 ng of total RNA according to 
manufacturer’s protocol (Agilent Low Input Quick Amp Labeling Kit, Agilent Technologies, USA). 
The probes were hybridized on human gene expression 4x44k v2 microarray slides (G4845A, 
Agilent Technologies, USA). Each microarray slide comprises four individual arrays with over 44k 
features containing probes sourced from RefSeq, Ensemble, UniGene and GenBank databases. 
Slides were scanned with an Agilent G2565CA scanner at 5 microns resolution. 

Microarray Data Analysis 

Agilent Feature Extraction (AFE) software v.11.0 was used for gridding, quantification of 
foreground and background intensities and quality assessment. Preprocessing and differential 
analysis of raw data generated by AFE were done in R/Bioconductor 
(https://www.bioconductor.org/) using standard routines included in the limma package as well as 
custom written routines.  

Two foreground estimates were used as inputs into microarray analysis; the raw median signal 
of feature from inlier pixels (gMedianSignal) and the signal left after AFE processing steps 
(gProcessedSignal). The gProcessedSignal was generated using a multiplicative detrending algorithm 
for background subtraction, which is described in detail in the AFE reference guide.  

The data preprocessing pipeline included the following steps: background correction (optional), 
removal of the control probes, normalization between arrays, probeset summarization and filtering 
probes by flags. Two different normalization and four different summarization methods were used, 
with and without a background correction step when gMedianSignal was considered. The raw 
median signal was background corrected using normexp+offset method, implemented in 
backgroundCorrect function, which has been shown to be superior to a simple subtraction of the 
background [19]. This method uses a convolution model which is fitted to the background 

https://www.bioconductor.org/
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subtracted signals and results in positive adjusted intensities. Data were normalised between arrays 
with either quantile or cyclic loess method using the normalizeBetweenArrays function. The role of 
normalization is to reduce the effect of systematic errors caused by experimental factors and make 
the arrays comparable to reveal actual biological differences. Quantile normalization forces the 
distribution of intensities on all analyzed arrays to be identical while cyclic loess is a method based 
on curve fitting, which iteratively applies multiple loess normalizations over all possible pairs of 
arrays.  BackgroundCorrect and normalizeBetweenArrays functions are available through the package 
limma. Summarization was done at the probe level with a custom written function who computes 
mean, geometric mean, median or the highest normalized intensity of duplicated probesets.  

Differentially expressed genes (DEG) between BC and CTR were assessed using moderated t-
test from limma package. The Benjamini and Hochberg method was used to adjust p-values for 
multiple testing [20]. The genes were considered differentially expressed when gene expression 
changes exceeded 1.5-fold in BC compared to CTR and the adjusted p-values < 0.05.  

Functional analysis of DEG was performed in Ingenuity Pathway Analysis (IPA) software. 
Fisher’s exact test was used to evaluate the significance of the associations between the DEG and 
the canonical pathways or the biological functions. A p-value < 0.05 was considered statistically 
significant.  

Results and Discussion 

The data were analyzed with 24 different preprocessing strategies by varying one parameter 
(foreground estimate, background correction method, normalization method, summarization 
method) at each run in order to evaluate the impact of these preprocessing methods for selecting 
differentially expressed genes. 

First, the effect of array normalization was assessed. In Figure 1a, b, the distribution of the raw 
and normalized intensities across all arrays for both foreground estimates was plotted. The boxplots 
of the non-normalized data revealed a higher dispersion of the signal intensities after AFE 
processing for all arrays, a pattern that is also preserved after normalization. Our data showed that 
quantile method performed well for both estimates; the boxplots were centered and had identical 
distributions. Cyclic loess tends to center the medians of arrays, but slight differences can still be 
observed mainly for the gProcessedSignal. However, an asymmetry was observed for both methods 
when dealing with gMedianSignal.  

To further explore the effect of background adjustment, a background correction step before 
normalization of the gMedianSignal was introduced. The basic rationale of background adjustment 
is the assumption that the signal of a spot is not only due to the fluorescence of the labeled probes 
hybridized in that spot but also to a background noise introduced by a variety of experimental 
factors. The decision to remove or not the influence of background is controversial, with no clear 
criteria to favor one or another approach. Background correction could reduce bias but, on the 
other side, this additional estimate increases the variability in the data. Scharpf and coworkers 
pointed out that a high correlation of foreground to background (0.3 or greater), in two color 
arrays, could indicate the need for background adjustment [21]. When the correlations are 
borderline (0.1-0.3), it is difficult to decide whether the background adjustment is the right choice. 
However, in this case the authors prefer a strategy with no background correction [21]. In line with 
this view, the correlation of foreground to background intensities was assessed. Our data were 
borderline, with values in the range of 0.08 and 0.13. Therefore we considered a strategy with a 
background correction step for gMedianSignal. Background adjustment led to a compression of 
probe intensities for array 28 but, as expected, both normalization procedures uniformed the 
distributions (Figure 1c). However, the cyclic loess method increased spreading of the data and 
number of outliers for array 28. Looking back at the data, a small correlation coefficient for this 
array (0.08) was observed. According to above considerations, it seems that background correction 
was not a proper option for this array. This situation is also reflected in the MA plots (Figure 2a).  
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b)  

 
 

c)  

Figure 1. The distributions of the raw and normalized log2 intensities for (a) AFE processed signal 
(b) median signal without background correction (c) median signal with background correction. 
Each box plot represents a sample (array) and the line at the center of each box represents the 

median value of the distribution. 

The MA plots produced with the two normalization methods were similar and overall 
background correction seems to not affect the variability of the data, excepting array 28 (Figure 2, 
Figure 1). However, the AFE processing steps seem to increase signal variability to a greater extent. 
At low intensities, normalized gProcessedSignal exhibited more variability than gMedianSignal, 
regardless of the normalization method (Figure 2).  
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a)  

b)  

Figure 2. MA plots produced with the two normalization methods, with and without background 
correction for gMedianSignal  (a) array 28 (b) array 12. The MA plots were generated relative to a 

virtual reference array where intensity of each probe is represented as its median in all analyzed 
samples (arrays). On y coordinate are represented the M-values as differences between log2 of each 

probe intensity on a certain array and  corresponding intensity on the virtual array while on x 
coordinate are represented the A-values as the average value of these intensities. 

Further, probe-level data were summarized into a single signal using four different approaches, 
as described in Materials and methods section. The sequences flagged as saturated and non-uniform 
by AFE, in 85% of the samples, were removed. After summarizing and filtering step 34127 
sequences were subjected to differential analysis. The results are summarized in Table 1. 

 Quantile normalization of gProcessedSignal resulted in the identification of 312 to 317 
DEG, depending on the summarization method, whereas 273-274 DEG were identified 
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with cyclic loess. A large overlapping between the number of genes identified with cyclic 
loess and quantile (258-259) regardless of the summarization method was found.  

 Very similar results were obtained when gMedianSignal with and without background 
correction was quantile normalized (100-101 DEG and 107-108 DEG). The same pattern 
was observed when cyclic loess was applied (82-84 DEG and 86-87 DEG). The quantile 
method identified almost all genes detected with cyclic loess across all summarization 
methods, except one gene identified just with cyclic loess.  

 The majority of the DEG identified when gMedian was normalized with cyclic loess was 
also identified when gProcessedSignal was normalized with the same method (78-79 
DEG). A large overlap was also observed for quantile method (91-92 DEG). Thus, using 
quantile normalized gMedianSignal we uniquely identified 15-16 DEG and when 
gMedianSignal was normalized with cyclic loess, we uniquely identified 8-9 DEG, whatever 
summarization method was used. 

Table 1. The results from differential analysis obtained with different processing strategies (↑- up-
regulated genes, ↓ - down-regulated genes) 

  

median geometric mean mean max 

#DEG regulation #DEG regulation #DEG regulation #DEG regulation 

gProcessedSignal 

quantile 317 
162↓ 

315 
161↓ 

314 
161↓ 

312 
161↓ 

155 ↑ 154 ↑ 153 ↑ 151 ↑ 

cyclic 
loess 

273 
134 ↓ 

274 
134 ↓ 

273 
134 ↓ 

273 
135↓ 

139 ↑ 140 ↑ 139 ↑ 140 ↑ 

gMedianSignal 

quantile 107 
37 ↓ 

108 
38↓ 

108 
38↓ 

108 
39↓ 

70 ↑ 70 ↑ 70 ↑ 69 ↑ 

cyclic 
loess 

87 
21 ↓ 

87 
21 ↓ 

86 
21 ↓ 

87 
22 ↓ 

66 ↑ 66 ↑ 65 ↑ 65 ↑ 

gMedianSignal_ 
BgCorrected 

quantile 100 
34 ↓ 

101 
35 ↓ 

101 
35 ↓ 

101 
36↓ 

66 ↑ 66 ↑ 66 ↑ 65 ↑ 

cyclic 
loess 

84 
22 ↓ 

84 
22 ↓ 

83 
22 ↓ 

82 
22 ↓ 

62 ↑ 62 ↑ 61 ↑ 60 ↑ 

 
Although the majority of the preprocessing methods presented here were assessed in terms of 

performance of the microarray data, to our knowledge there are no reports that describe their 
impact for selecting differentially expressed genes. Our results showed that regardless of the 
preprocessing methods, background correction of the raw median signal seems to not affect the 
results, but the algorithm of background correction implemented in AFE has a great impact in 
downstream analysis. Our data showed that AFE preprocessing led to a higher dispersion of the 
signal intensities and resulted in a large increase in the number of DEG. The summarization 
methods used in this paper have no impact regarding the number of DEG, but as expected, they 
have a small effect in terms of magnitude of the fold changes for some genes. On the other hand, 
the normalization methods appear to influence to a greater extent the results. If in terms of 
reducing variability, both methods performed comparably, in terms of impact in the selection of 
DEG, quantile method performed better than cyclic loess. Using quantile, more genes than with 
cyclic loess normalization were consistently identified. Our results are in accordance with the 
literature, which indicate quantile as a robust method for normalization of microarray data [22].   

Although some of the above approaches led to a higher number of DEG, it is interesting to 
verify if these additional genes are biological relevant. To check whether some of these strategies 
result in better biological sensitivity, functional analysis in IPA was performed for three gene 
datasets: 

(i) gene dataset 1: DEG obtained using gMedianSignal, quantile normalized, median 
summarized 

(ii) gene dataset 2: DEG obtained using gProcessedSignal, quantile normalized, median 
summarized 
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(iii) gene dataset 3: DEG obtained using gProcessedSignal, cyclic loess normalized, median 
summarized 

Using IPA we identified: (i) 36 canonical pathways (CP) and 21 molecular and cellular functions 
(MCF) for IPA dataset 1, (ii) 25 CP and 20 MCF for IPA dataset 2 and (iii) 24 CP and 18 MCF for 
IPA dataset 3. For each gene dataset, five of the most significant CP and MCF are listed in Table 2.  

Table 2. The top five canonical pathways and molecular and cellular functions obtained in IPA for 
three different strategies (three gene datasets) 

 gene dataset 1 
Input: 

gMedianSignal 
Normalization: 

quantile 
Summarization: 

median 

gene dataset 2 
Input: 

gProcessedSignal 
Normalization: 

quantile 
Summarization: 

median 

gene dataset 3 
Input: 

gProcessedSignal 
Normalization: 

cyclic loess 
Summarization: 

median 

Top Canonical Pathways (CP) 

Name p-value overlap 
(%) 

p-value overlap 
(%) 

p-value overlap 
(%) 

Granulocyte Adhesion and Diapedesis 7.36e-08 5.5 2.68e-07 8 1.68e-05 6.1 

Agranulocyte Adhesion and Diapedesis 1.56e-06 4.6 3.4e-06 6.9 1.58e-04 5.2 

Differential Regulation of Cytokine 
Production in Macrophages and T 
Helper Cells by IL-17A and IL-17F 

7.84e-05 16.7 1.61e-03 16.7 1.03e-03 16.7 

Communication between Innate and 
Adaptive Immune Cells 

2.26e-05 6.9 2.65e-03 6.9 1.33e-03 6.9 

Differential Regullation of Cytokine 
Production in Intestinal Epithelial 
Cells by IL-17A and IL-17F 

1.67e-04 13 3.34e-03 13 2.13e-03 13 

Total number of CP 36 25 24 
Top Molecular and Cellular Functions (MCF) 

Name p-values 
range 

#molecules p-values 
range 

#molecules p-values 
range 

#molecules 

Cellular Movement 9.48e-04 – 
1.30e-11 

33 
4.64e-03 – 
5.13e-10 

61 
4.35e-03 – 
1.46e-10 

55 

Cellular Development 9.22e-04 – 
1.35e-16 

52 
4.64e-03 – 
9.52e-09 

99 
3.57e-03 – 
4.19e-08 

84 

Cell_to-Cell Signaling and Interaction 8.52e-04 – 
7.72e-09 

33 
4.64e-03 – 
1.02e-07 

64 
4.35e-03 – 
9.18e-07 

54 

Cellular Growth and Proliferation  9.31e-04 – 
5.15e-09 

48 
3.94e-03 – 
2.37e-07 

95 
3.57e-03 – 
1.84e-06 

54 

Cell Death and Survival 8.64e-04 – 
1.79e-10 

46 
4.65e-03 – 
2.24e-06 

82 
4.35e-03 – 
7.88e-07 

77 

Total number of MCF 21 20 18 

 
One might think that the more DEG in a dataset are subjected to functional analysis, the more 

significant CP and MCF are over-represented in that dataset. Conversely, we identified more 
statistically significant CP and MCF for gene dataset 1 (gMedianSignal) than for gene dataset 2 
(gProcessedSignal), although the second dataset contains with 200 DEG more than the first one 
(Table 1). On the other hand, the p-values for CP and MCF in gene dataset 1 were consistently 
more significant (smaller values) than p-values for CP and MCF in gene dataset 2 (Table 2). These 
results show that using the signal preprocessed by AFE instead of the raw median signal doesn’t 
lead to a better biological sensitivity, despite increased number of DEG.  

When the normalization method was taken into account, we noticed that a small increase in the 
number of DEG (n=44) led to an increase in the number of MCF, CP and statistical significance 
(Table 2). These results confirm that the choice of normalization method impacts the results and 
show that quantile method improves the biological relevance of the data. 
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Conclusions 

Our study showed that microarray results are affected to a greater or a lesser extent by the 
choice of the preprocessing methods. We found that background correction of the raw median 
signal and summarization methods have no impact in downstream analysis while the choice of the 
normalization method influences the results. Using quantile method we consistently identified more 
DEG than with cyclic loess normalization and this increase in the number of DEG result in an 
improvement of the biological relevance. Our data highlighted that preprocessing algorithm 
implemented in AFE led to identification of a larger number of DEG but that is not reflected in a 
better biological sensitivity. 

List of abbreviations  

AFE  – Agilent Feature Extraction software 
BC – breast cancer patients 
CP - canonical pathways  
CTR – control group (healthy female) 
DEG - differentially expressed genes 
IPA - Ingenuity Pathway Analysis 
MCF - molecular and cellular functions 
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