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Abstract 
In the diagnosis and treatment of various diseases, often segmenting the brain structures from MRI 
data is the key step.  Since there are larger variations in the anatomical structures of the brain, 
segmentation becomes a crucial process. Using only the intensity information is not enough to 
segment structures since two or more structures may share the same tissues.  Recently, the use of 
multiple pre-labeled images called atlases or templates are used in the process of segmentation of 
image data. Both single atlas and multiple atlases can be used.  However, using multiple atlases in 
the segmentation process proves a dominant method in segmenting brain structures with 
challenging and overlapping structures. In this paper, we propose two multi atlas segmentation 
methods: Local Patch Distance Segmentation (LPDS) and Weighted Local Patch Distance 
Segmentation (WLPDS). These methods use local patch distance in the label fusion step.  LPDS 
uses local patch distance to find the best patch match for label propagation.  WLPDS uses local 
patch distance to calculate local weights. The brain MRI images from the MICCAI 2012 
segmentation challenge are chosen for experimental purposes. These datasets are publicly available 
and can be downloaded from MIDAS. The proposed techniques are compared with existing fusion 
methods such as majority voting and weighted majority voting using the similarity measures such as 
Dice overlap (DC), Jaccard coefficient (JC) and Kappa statistics. For 20 test data sets, LPDS gives 
DICE=0.95±0.05, JACCARD=0.91±0.04 and KAPPA=0.94±0.07. WLPDS gives 
DICE=0.98±0.02, JACCARD=0.92±0.03 and KAPPA=0.95±0.04. 

Keywords: Brain MRI images; Subcortical Structures; Local Patch Distance Segmentation (LPDS); 
Weighted Local Patch Distance Segmentation (WLPDS) 

Introduction 

Segmenting brain tissues/ structures is the key step in the diagnosis and treatment of various 
brain related disorders. The MRI scan gives clear and exhaustive images of soft tissue.  Bones can’t 
be visualized using MRI because bone tissue contains small amounts of water.  Due to this, MRI 
and fMRI are widely used in tissue and structure segmentation. Tissue segmentation can be done 
using intensity threshold. But segmenting brain structures is complicated as a structure may be 
comprised of more than one tissue type. Because of this, segmenting brain structures represents a 
very crucial step. Though a lot of research has been done in this area, still it remains a challenging 
field. Using prior knowledge about the spatial relationships among structures, called atlases, we can 
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segment the structures with larger dissimilarities. Among other proposed methods, atlas based 
methods give best result [1].  Multiple atlases [2,3] prove to be the best method when compared to 
single atlas, especially when there are larger dissimilarities in the structures. If a single atlas is used 
during segmentation, then the result will be biased. To remove such biases and also segment 
structures with larger dissimilarities, multiple atlases are used. When multiple atlases are used the 
accuracy of the segmentation is not that much affected by the errors produced during registration.  
This method has two steps, registration and fusion. The registration is done for each atlas image 
with the test image to align both of them into a common space and the labels from the atlas image 
are propagated to the test image.  This step gives a set of segmentations, one for each atlas image.  
Then the fusion of labels from all segmentations is done to obtain the final true segmentation. 

An atlas is a set of intensities and their segmented label image. The accuracy of the 
segmentation result largely depends on the selection of atlases [4]. Various techniques can be 
applied in the label fusion step.  Majority voting [4-6] is considered as the simplest label fusion 
strategy and is widely used one. Weighted voting [7] is a technique which assigns a positive weight, 
calculated using the atlas target similarities (similarities can be globally [2,6], locally [7,8] or 
combined [9]). The patch based method proposed by Coupe et al. [10]. Kittler et al. [11] gives an 
overview of various fusion rules.  An expectation maximization method is used in the STAPLE 
algorithm to compute weight [12]. The segmentation pipeline using multiple atlases is shown in 
Figure 1. A new method for selecting a best matching patch in the label fusion step, called Local 
Patch Distance Segmentation, which computes a local patch distance using neighborhood intensity 
similarities is proposed. Also a variation in LPDS called WLPDS is developed for calculating local 
weights. 

 

 
Figure 1.  Segmentation pipeline 

Materials and Methods 

Let us denote the image to be segmented by IT and atlas image set by A={A1,A2,…AN} 
where there are ‘N’ atlases.  An atlas, Ai, is an intensity and label pair denoted by AIi and ALi 
respectively. The intensity heterogeneity is caused mainly due to the RF coil imperfections [13,14]. 
This artifact results in the variation of intensities in the same tissues. These variations affect the 
segmentation results. The first intensity heterogeneity correction should be done on all images. 
Then both test and atlas images are aligned rigidly to a common template for further processing. 
The brain tissues should be extracted from the non-brain area via a process called skull stripping 
for good results and to increase the speed of the algorithm.  Then the test image IT should be non-
rigidly aligned with each atlases Ai which yields a transformation field for each registration.  Using 
this transformation field the labels from corresponding atlas label image Ali are propagated to 
produce an equivalent intermediate segmentation Si.  This registration process yields ‘N’ 
intermediate segmentations, Si, where i=1,2,…N, one for each atlas.  Our objective is to combine 
all these intermediate segmentations and produce the final true segmentation, TFinal, using some 
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combination rule. The segmentation accuracy is computed by comparing TFinal with the golden 
standard (provided in the training set) using any similarity measures. Our problem is to formulate a 
fusion approach that produces TFinal with greater accuracy. Our algorithm should segment multiple 
structures even though the intensity of the atlas and target images varies highly. For each voxel, we 
consider both the performance of the atlas as well as the spatial information in addition to the 
intensity during the labeling process. During label fusion process, the STAPLE [12] method 
considers the performance of the atlas whereas the simple voting method does not.  Both the 
STAPLE [12] and simple voting methods do not consider the intensity information in the labeling 
process.   

Data 

ADNI, LONI, LPBA 40, SATA and IXI are some of the publicly available data sets that can be 
used for the evaluation of segmentation algorithms. SATA(MICCAI 2012 Challenge on 
Segmentation: Algorithms, Theory and Applications) data set was used for evaluation of the 
proposed algorithm. There are 15 labeled datasets and 20 unlabeled data sets, which are bias 
corrected. These datasets are downloaded from MIDAS digital archive system [15]. We segmented 
the brain structures for all the images by selecting one image as target image and remaining as 
atlases from the data set using leave-one-out strategy. 

Local Patch Distance Segmentation (LPDS) 

In this paper, we aimed to design a system that automatically segments T1-weighted brain MRI 
volumes into anatomical sub-cortical and cortical structures. We approached the 3D brain image 
segmentation problem as a minimization problem.  We also proposed a variation of our method, 
using local patch distance to find local weights and then using majority voting rule to select the 
target labels. Patch based method operates on the local voxel’s intensity values of an image. Figure 
2 shows the framework for LPDS.  From the atlas set, a set of atlases are selected based on the 
following criteria: 

• Find the normalized mutual information between each image from the template and the test 
image 

• The closer the value the more the images will be similar. 
• Select the top 10 most used images as atlases [4]. 

Usually most of the label fusion step catches the similarities among the neighborhood voxels.  
A center voxel and its neighborhood voxels in certain shape form a patch. Usually the selected 
shape will be cubical.  For each voxel in an image, a patch, a vector of size m × 1 is considered.  
The test image IT is divided into n patches (PTi, i=1…n) and the N atlases are divided into Ak 
patches (k=number of patches n * number of atlases N).  Let PT ={PTi} and PA ={Ak} be two 
sets, test and atlases patches respectively.  Our objective is to find a best match for every patch PT 
in PA and assign the label of PA (center voxel) to the center voxel in PT.  Usually the patch based 
methods does not require registration.   Here, in our approach, for greater accuracy, we non-linearly 
registered each atlas and test image separately for matching purposes.  Our method uses local patch 
distance to measure similarity for selecting the best matching patch.   It is calculated for each patch 
from atlas images and from target test image. For each patch from the target image, the patch with 
the smallest local patch distance gives a best matching patch from the atlas image.  The label from 
that best match patch (label of center voxel) is transferred to the center voxel in the target patch.  
These steps are repeated for all the patches in the target image.  The algorithm for calculating the 
local patch distance is given below: 
• Divide the test image (IT) and all atlases (Ai i=1, ..N) into equal sized patches 
• For each patch in the test image, PTj , and for every atlas, PAi repeat the following steps: 

o Start search for the similar matching patch in an atlas image from the same location.   
o If a match is found then set local patch distance as 0 (means this the best match) 
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o If not, then search in the neighborhood patches of that atlas, calculate the offset between 
these two patches and sum up the offset.  Repeat this step until a matching patch is 
found or until the maximum neighborhood distance (parameter) is reached. 

 
AtlasesInput Test 

Measure Similarity between each 
atlas and input test image 

Select Top 10 ranked atlases

Find Best match using LPD for each 
voxel in input test image 

Registration and label propagation 

Label Fusion

Final Segmentation  

Figure 2. Local Patch Distance Segmentation Framework 

 

Weighted Local Patch Distance Segmentation (WLPDS) 

In WLPDS, after calculating the local patch distance for the target image, weights will be 
calculated using the weighted scheme.  More weights (using 1) will be assigned to the patch that has 
the smallest local patch distance. 
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where d(PTi, PAi) are the local patch distance between patches PTi, PAi, z>0 smoothing 
parameter.   

Then after assigning weights, the labels are fused using weighted majority voting rule to form 
the final segmentation, TFinal. 

Dice coefficient, Jaccard Coefficient, False positive rate, False negative rate, and Kappa 
statistics as metrics were used for evaluation of the proposed method. The segmentation results 
were compared with the pre-labeled image from the training set provided by MIDAS. The dice 
overlap is calculated by using  

D(A,B)=[2|A∩B|]/[|A|+|B|] (2) 
Jaccard coefficient is calculated by using  
J(A,B)=(A∩B)/(A∪B) (3) 

where A and B refers to final segmentation and ground truth image respectively; the value 0 gives 
dissimilarity and 1 gives similarity.   
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Segmentation errors are calculated as false positive (FP) and false negative (FN) using 
FP=|A|B|/B (4) 
FN=|B|A|/B (5) 

where A and B refers to the final segmentation and ground truth image respectively 
Since all the images provided in MIDAS are already homogeneity corrected, we omit this 

preprocessing step. However for bias correction we use ANTs N4 bias correction algorithm 
described by Tustison et al. [16]. After bias correction, all images (both test and atlases) are rigidly 
aligned with MNI template space using 3D Slicer’s BrainsFit [17] for further processing. For 
removing non-brain tissues, the ROBEX [18] skull stripping algorithm proposed by Iglesias et. al. 
[19] was used. The top 10 atlases [4] are selected from the atlas set by calculating similarity, using 
mutual information between the test image and each atlas. Then the test image is non-rigidly 
registered with each atlas image and the labels from the atlas image are propagated to the aligned 
test image using ANTs tool [20]. This gives 10 different segmentations, one for each atlas that are 
fused using our proposed methods. Figure 3 (a) to (e) shows the result of segmentation of a sample 
test image for one atlas. 

  
a) b) c) d) 

 e) f) 

  

G 

  
Figure 3. Segmentation result for one test image using WLPDS – (a) Test Image; (b) Test image 
after skull stripping using ROBEX; (c) Test image after non-rigid registration using ANTs; (d) 

Segmentation of test image; (e) Propagation of Label from atlas to test image; (f) TFinal after of (e) 
for all remaining atlases using LPDS; (g) TFinal after of (e) for all remaining atlases using WLPDS 

The Final segmentation after fusion of all intermediate segmentations obtained by registration 
of each atlas with the test image is shown in Gigure 3(g) and 3(h). Majority voting and weighted 
majority voting was in comparison of the proposed approach. 

Our experiment was conducted for all the images in MICCAI 2012 challenge data set. Our 
algorithm was tested on an Intel® Core ™ i3-3271U CPU @ 1.80 GZ using ITK [21]. Among the 
operations, only non-rigid registration and fusion steps consume more time. For doing each set of 
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registration, 30 to 40 minutes are needed.  To do the final fusion, the proposed algorithm takes 1 ½ 
hours. The time taken to compare the result with the golden standard was 49332 milliseconds. 

Results 

Table 1 and Figure 4 show the performance comparison of our methods with simple majority 
voting and weighted majority voting in terms of Dice, Jaccard, and Kappa statistics. 

Table 1. Average segmentation performance comparison of different label fusion strategies - 
LPDS, WLPDS, MV and WMV for 20 training data sets in terms of Dice, Jaccard and Kappa 

statistics(±standard deviation). 

Methods / Measures LPDS WLPDS MV WMV 

DICE 0.9547±0.05 0.9854±0.02 0.8245±0.95 0.9245±0.39 
JACCARD 0.9133±0.04 0.9231±0.03 0.9021±2.01 0.9453±1.10 
KAPPA 0.9453±0.07 0.9544±0.04 0.9321±2.98 0.8934±1.03 

 
 

 
Figure 4. Comparison of segmentation performance of LPDS, WLPDS, MV & WMV in terms 

of Dice Similarity, Jaccard coefficient and Kappa Statistics 

 
Because the overall performance of WLPDS is greater when compare to LPDS, the 

performance of segmentation of various structures for WLPDS were compared and the results are 
given in Table 2 & Figure 5. 

Table 2. The average dice overlap, Jaccard, Target, False Negative and False Positive for 
segmenting various structures for 20 data sets using WLPDS 

Name  Target Jaccard Dice FN FP 

CSF 0.9697 0.8397 0.9129 0.0304 0.1376 
Left Amygdala 0.9648 0.8852 0.9391 0.0352 0.0852 
Left Hippocampus 0.9553 0.9088 0.9522 0.0447 0.0508 
Left Caudate 0.9543 0.9251 0.9611 0.0457 0.0319 
Left Pallidum 0.9529 0.9196 0.9581 0.0471 0.0366 
Left Putamen 0.9774 0.9433 0.9708 0.0226 0.0357 
Right Amygdala 0.9235 0.8729 0.9321 0.0766 0.0590 
Right Hippocampus 0.9402 0.8960 0.9452 0.0598 0.0498 
Right Caudate 0.9647 0.9303 0.9639 0.0353 0.0369 
Right Pallidum 0.9340 0.9008 0.9478 0.0661 0.0379 
Right Putamen 0.9802 0.9594 0.9793 0.0198 0.0217 
FN = false negative; FP = false positive 

Si
m
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Figure 5. Evaluation of WLPDS for the test image in Figure 3a 

Table 3 and Figure 6 and show the segmentation performance of WLPDS for various numbers 
of atlases.  

Table 3. Segmentation performance comparison of WLPDS for the test image (figure 3a) for a 
different number of atlases 

Atlases Total JC DC Volume sim. False negative False positive 

10 0.8957 0.8225 0.9026 -0.0155 0.1043 0.0904 
7 0.8801 0.8020 0.8902 -0.0228 0.1199 0.0996 
5 0.8536 0.7726 0.8717 -0.0425 0.1464 0.1094 
4 0.8171 0.7296 0.8436 -0.0651 0.1829 0.1280 

JC = Jaccard; DC = Dice 
 

 

Figure 6. Comparison of WLPDS for different number of atlases 

For evaluation of our methods, the average overlap and the standard deviation between the 
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segmented image and the golden standard image were compared. For the test image shown in 
Figure 3a, LPDS gives DICE=0.9547±0.05, JACCARD=0.9133±0.04 and KAPPA=0.9453±0.07. 
WLPDS gives DICE=0.9854±0.02, JACCARD=0.9231±0.03 and KAPPA=0.9543±0.04. The 
same test image gives DICE=0.8245±0.95, JACCARD=0.9021±2.01 and KAPPA=0.9321±2.98 
for simple majority voting method and gives DICE=0.9245±0.39, JACCARD=0.9453±1.10 and 
KAPPA=0.8934±1.03 for weighted majority voting. 

Discussion 

Two variations in the label fusion step in the process of segmentation of brain image using 
multiple atlases were proposed in this manuscript. To label a voxel, the intensity and spatial 
information of neighboring voxels in addition to that particular voxel were used. The overall mean 
dice similarity for majority voting is 0.726±0.138, joint label fusion is 0.766±0.013 and joint label 
fusion with corrective learning [22], which won first place in the 2012 MICCAI Multi-Atlas 
Labeling Challenge is 0.782 ± 0.010.  The overall mean dice similarity for LPDS is 0.732±0.136 and 
WLPDS is 0.739 ± 0.179, which are slightly greater than majority voting but lesser than joint label 
fusion and joint label fusion with corrective learning.  The majority voting method assigns equal 
weights to every atlas.  This doesn’t consider the similarities between atlas and test image. Also the 
intensity information of the test image is also ignored [2]. Joint Label Fusion method considers the 
dependency among the test image and atlases in calculation of weights. The errors produced by 
registration are eliminated in this method. But errors can be produced by the spatial bias.  To 
eliminate such bias, corrective learning technique is applied. An AdaBoost classifier was trained to 
correct this bias error. Our method takes both the spatial correspondence between the test image 
and atlas image in assigning the weights. The limitations of our methods are that the method is are 
time consuming and depend on the structure to be segmented. In future, the true patch based 
segmentation using local patch distance will be implemented which will ignore the registration 
between atlases and target image, the time consuming step. Hence the total time taken to segment 
the brain can be reduced and the speed of the segmentation process will be increased. 

The key idea of our method is using the intensity information of surrounding voxels in addition 
to the current voxel to find the best match which is ignored by most of the current label fusion 
techniques. For weight calculation both intensity information as well as the atlas target matching 
information were used. This is the main advantage of our method. In our segmentation pipeline, 
the top 10 atlases were first selected using mutual information which also reduced the total number 
of registrations and hence reduces the total time taken for the entire segmentation process. Our 
further research is towards eliminating registration step and hence reduces the time taken for 
segmentation. 

List of abbreviations   

ADNI – Alzheimer’s Disease Neuroimaging Initiative  
ANTs – Advanced Normalization Tools 
DC – Dice Overlap 
fMRI – Functional MRI 
FP – False Positive 
FN – False Negative 
IXI - Information eXtraction from Images 
ITK –Insight Segmentation and Registration Toolkit 
JC – Jaccard’s Coefficient 
KAPPA – Kappa Statistics 
LONI – Laboratory of Neuro Imaging 
LPBA 40 - LONI Probabilistic Brain Atlas  
MRI – Magnetic Resonance Imaging 
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SATA - Segmentation: Algorithms, Theory and Applications 
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