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Abstract 
Volumetric medical image datasets contain vital information for noninvasive diagnosis, treatment 
planning and prognosis. However, direct and unlimited query of such datasets is hindered due to 
the unstructured nature of the imaging data. This study is a step towards the unlimited query of 
medical image datasets by focusing on specific Structures of Interest (SOI). A requirement in 
achieving this objective is having both the surface and volume models of the SOI. However, 
typically, only the surface model is available. Therefore, this study focuses on creating a fast method 
to convert a surface model to a volume model. Three methods (1D, 2D and 3D) are proposed and 
evaluated using simulated and real data of Deep Perisylvian Area (DPSA) within the human brain. 
The 1D method takes 80 msec for DPSA model; about 4 times faster than 2D method and 7.4 fold 
faster than 3D method, with over 97% accuracy. The proposed 1D method is feasible for surface 
to volume conversion in computer aided diagnosis, treatment planning and prognosis systems 
containing large amounts of unstructured medical images. 

Keywords: Medical image analysis; Medical image querying; Medical image database; Medical 

informatics; Content-based image retrieval 

Introduction 

There has been and continues to be an enormous amount of medical image data acquisitions 
from minimally invasive examinations. Image modalities include brain Magnetic Resonance 
Imaging (MRI), Computed Tomography (CT), Positron Emission Tomogrpahy (PET), Single-
Photon Emission Computed Tomography (SPECT), function MRI (fMRI), Diffusion Tensor 
Imaging (DTI) [1-3]. In fact, five billion medical images have been acquired up to 2010 worldwide 
[4]. According to the Organisation for Economic Co-operation and Development (OECD), there 
were 97.7 MRI exams and 265 CT exams performed per 1,000 population in the United States in 
2010 [5]. This tremendous number of exams results in tens of terabytes of medical image data 
storage in an average size radiology department per year and hence petabytes of data storage across 
all radiology departments [6].  

Medical imaging data are typically stored in archival systems such as Picture Archiving and 
Communication System (PACS). PACS systems are excellent at storing the images. Furthermore, 
PACS systems retrieve the unstructured medical images using structured data such as the imaging 
acquisition information [7-9]. However, they lack the ability to retrieve the unstructured medical 
images using the contents of the unstructured image data directly such as the volume of a brain [10, 
11].  
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Quantitative analysis of the unstructured image data stored in PACS systems is extremely 
important in noninvasive diagnosis, treatment planning and prognosis [12]. For instance, volumetric 
and texture analysis of brain MRI can be used to lateralize and localize epileptogenic hippocampi in 
temporal lobe epilepsy [12, 13]. This task is not only challenging for PACS systems, but it is also 
challenging for human experts who tend to be more qualitative than quantitative. Moreover, the 
vast volume of data makes such a task beyond human capabilities in many cases [14]. Therefore, 
there is a need for a system to automatically query and retrieve images using unstructured image 
data. 

In the current literature, there are two major types of methods used to query unstructured image 
data. The first method is text-based, which was originally developed in the 1970s [15]. This method 
uses the images’ structured data (i.e., image annotations) for querying and retrieving images. 
Systems that rely on text-based searches include iBase, Index+, Digital Catalogue, Fastfoto Picdar, 
FotoWare and Signpost [16]. Furthermore, annotations may not be specific enough to the location 
in the image being referenced [16].  

In the medical domain, text-based methods are executed on image annotations as dictated by a 
radiologist. This method has several shortcomings. Annotations may be biased due to the 
radiologist’s mindset at the time of annotating [11]. In addition, annotations are narrow scoped and 
do not lend themselves to future querying with different criteria to obtain additional insights on the 
image which is due to the abundance and complexity of image data [13, 6]. Furthermore, 
annotations may not be specific enough to the location in the image being referenced [16]. Finally, 
it is difficult to obtain the semantics of the images from the basic annotations [17].  

The second method used for querying image data is Content Based Image Retrieval (CBIR), 
which was originally developed the 1980s. CBIR overcomes the shortcomings of a text-based 
system because it operates on the unstructured image data directly. Some systems that rely on CBIR 
include QBIC, Virage and Blobworld [18, 19]. CBIR consists of three levels [15]. First level 
operates on low-level features such as color, texture, and shape. The values from these features are 
used to perform image retrieval (e.g. [20]). The second level operates on the semantics of the image 
such as recognizing the overall scene and the objects within it. The third level also leverages the 
semantics of the images but at a much higher level in order to answer queries such as determining 
the mood of the picture [7, 14, 15].  

In this paper, we are interested in the first level of CBIR methods that operate on low-level 
shape features. Shape features are placed in two categories, global features, and local features. 
Global features describe overall features of the image such as aspect ratio. Local features describe 
the shape of a specific Structure of Interest (SOI) within the image, which is the focus of this paper 
[21].  

An SOI is used to query local low-level features instead of the entire image [22]. In a medical 
application, a SOI can be a physiological or anatomical structure segmented in a medical image 
modality (e.g. T1-weighted MRI). The result of the segmentation can be a set of 2D binary image 
slices that it will be refered to as the volume model. Furthermore, the volume model can be 
transformed into the outer 3D surface model of the SOI that we refer to as the surface model.  

In order to extract the most information (e.g. features) from a given SOI, both the volume 
model and the surface model must be available. This is because some features are extracted easier 
using one model representation than the other. Unfortunately, both models are not always present.  

The volume model representation of the medical SOI is needed since some features are 
retrieved easier with it. For example, the volume model can be used to query human brain changes, 
which happens due to a variety of reasons such as age and disease [22]. Specifically, as a person 
ages, the volumes of grey and white matter, the size of some brain structures and the size of the 
brain are reduced. In order to measure the reduction, a brain volume model must be used [23]. The 
volume model makes it possible to apply methods such as cross-sectional analysis of deformations, 
cross-sectional analysis of tissue concentrations, longitudinal analysis of boundary shift, pattern 
classification methods, and cortical pattern matching, to identify brain changes [24]. Furthermore, 
in order to visualize the volume model, direct volume rendering techniques can be used [25] and 
ray-leaping techniques can be used [26]. Therefore, the volume model is needed for a subset of 
queries against the medical SOI. 
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A more concrete example to solidify the link between theory and practice for using the volume 
model is given here. Suppose in a clinical data repository, we have conventional MRI and DTI 
images of hundreds of patients with temporal lobe epilepsy where the hippocampi are already 
segmented on pre-op conventional MRI and their surface models are available. Given this data 
repository we would like to know whether the average Fractional Anisotropy (FA) within the white 
matter adjacent to hippocampus has any indication regarding epileptogenicity. This can potentially 
help in diagnosis and prognosis as to whether the hippocampal resection will be an effective 
treatment plan [27-29]. Using morphological image processing would provide an efficient method 
to generate the adjacent models. This method can only be applied to the volume model and not the 
surface model. Moreover, using surface model based methods cannot provide as efficient approach 
as given by morphology. In this scenario, having the volume model is necessary and therefore 
having the capability of converting the surface models to the volume models would be essential. 
Note that one may derive many different variations of the example given above (e.g. by looking 
into different brain structures such as the Deep Perisylvian Area or different diffusion maps) that 
show the link between theory and practice for the proposed work. 

The surface model representation of the SOI is also needed since some features are more easily 
retrieved  with the help of it. For example, the surface model is used to perform shape and 
curvature analyses [24, 30], which can then be used to identify hippocampal abnormalities [13, 31-
34,]. In addition, the surface model enhances the ability to simplify segmentation, label the various 
structures, and reduce the effect of noise [35]. Furthermore, the surface model can be visualized 
using surface rendering techniques [25]. Therefore, the surface model is needed for a subset of 
queries against the medical SOI. 

Motivation 

As noted above, both the surface model and the volume model are needed to fully query 
medical image data. As a result, conversion methods between the surface and volume models are 
important. Constructing a surface model from a volume model is most commonly accomplished 
using Marching Cubes [36-38]. In this paper, we propose and develop the reverse conversion from 
a surface model to a volume model that is starred in Figure 1. There are some practical advantages 
for such a conversion. For example, the storage of surface models uses less space than that of 
volume models, which is especially true in older archived images. In addition, surface models can 
be under-sampled or over-sampled when converting to a volume model to fulfill the given task. 

 

Figure 1. Overall system for querying an unstructured medical Structure of Interest. The 
contribution of this paper is the Surface to Volume Conversion method 

Surface to Volume Methods Background 

Surface model to volume model conversion entails finding all the voxels inside the surface 
model. In the literature, this problem is reduced to classifying voxels as inside or outside a 2D 
polygon. However, in the medical field we deal with 3D surface models so this approach is not 
sufficient. Therefore, the 3D surface model must first be cut into a set of 2D polygons whose 
voxels are then classified. The general approach to accomplish the classification task is ray casting. 
Ray casting literature can be grouped into two categories:  
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a) Methods with preprocessing  

 Jimenez et al. propose a preprocessing method of tri-trees followed by two different 
classification tests including ray casting and triangle based [39]. 

 Zalik et al. propose a preprocessing method of a grid of cells followed by a classification 
test based on a modified flood-fill method [40].  

b) Methods without preprocessing 

 Ye et al cast a ray through the test point and classify it by using a substitution method [41].  

 Jian et al cast a ray from the test point and classify the test point based on the sum of a 
position function between the ray and the edges [42]. 

 Siadat et al use traditional ray casting with coagulation effect within their database 
management system [13]. 

As summarized above, ray casting is a well-known approach for classifying a point as inside or 
outside of a 2D polygon. Since this work is related to the medical field, which has 3D surface 
models, we extended the 2D ray casting to be done in 3D on the surface model directly, 
implemented the 2D method, and developed a novel approach for 1D. The development of the 1D 
method was inspired by our observation of how the 3D method can be constrained into a 2D 
method. 

Method 

A surface model is a closed surface made out of triangle patches. A volume model consists of 
all the voxels inside the surface model.  Therefore, to convert a surface model to a volume mode, 
all the voxels inside the surface model must be found.  To do this, a 3D method has been proposed 
which is an extension of traditional 2D ray casting; also, the traditional 2D ray casting has been 
mathematically formulated; finally, a novel 1D method has been proposed. Also, please note that to 
convert the other way, a volume model to a surface model, then a marching cubes can be used as 
depicted in Figure 2.  The rest of the method section will explain the surface model to volume 
model 3D, 2D and 1D conversion methods, respectively.  

 

 

Figure 2. Steps of converting a volume model to a surface model 

3D Method 

At a high level, this method commences by casting 3D rays from every test voxel within the 3D 
space and classifying the voxel inside or outside the surface model based on the number of 
intersections the rays have with the surface model’s triangle patches. The high level steps are as 
below followed by a detailed explanation of each step. 

1. Calculate a plane for each triangle patch. 
2. Determine the bounding box of the surface model. 
3. For each voxel in the bounding box, cast a set of rays. 
4. Intersect each ray with all the triangle patches’ planes. 
5. Count the number of intersections that each ray encountered.  
6. Using a formula, classify the voxel as inside or outside the surface model. 
7. Create a volume model using all the voxels classified as inside the surface model.  

Step 1, for each triangle patch Ti,i  {1, ..., h}, a plane PT is calculated using the plane equation 
(Eq. 1). Without loss of generality, d' is set to -1, which simplifies Eq. 1 into Eq. 2 by substitution. 
Parameters a, b, and c comprise a 3D normal vector n of PT for each Ti. Since Ti’s three vertices are 
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on its corresponding PT, Eq. 2 is transformed into a linear system of equations as in Eq. 3 where 
matrix M contains the vertices’ coordinates and the vector 1 = [1 1 1] represents the location of PT. 

PT: a'x + b'y + c'z + d' = 0        (1) 
PT: ax + by + cz = 1         (2) 
PT: M-1 1= n         (3) 

Step 2 is to create a 3D bounding box around the surface model to reduce the number of 
voxels that need to be classified. The 3D bounding box is calculated by finding the minimum and 
maximum values of x, y and z of the surface model and enlarging it by a few voxels so that it is not 
touching the surface model.  

Step 3 casts a set of rays, each denoted by R, from every test voxel to be classified as inside 
within the 3D bounding box, denoted by Pb(xb,yb,zb) to a neighboring structure’s voxels, denoted by 
Pbni(xbni,ybni,zbni), using Eq. 4. An example of a neighboring structure is the set of 26 points that 
neighbor Pb(xb,yb,zb) formed by various combinations of xb, yb and zb incremented by 1 and 
decremented by -1 as listed in Table 1. Using Table 1, a unique set of values to 
increment/decrement from each column is selected (e.g. see bolded line segments in Table 1) 
because intersections are counted on one side of the voxel only. Note that more than one ray is 
used because there are extreme cases in which casting only one ray may result in an inaccurate 
classification. 

R: (x-xb)/(xbni-xb) = (y-yb)/(ybni-yb) = (z-zb)/(zbni-zb)     (4) 

Table 1. Showing a set of 26 possible neighboring points to point (0,0,0) 

1, -1, 1 0, -1, 1 -1, -1, 1 -1, 0, 1 -1, 1, 1 0, 1, 1 1, 1, 1 1, 0, 1 0, 0, 1 1, -1, 0 0, -1, 0 -1, -1, 0 -1, 0, 0 

-1, 1, -1 0, 1, -1 1, 1, -1 1, 0, -1 1, -1, -1 0, -1, -1 -1, -1, -1 -1, 0, -1 0, 0, -1 -1, 1, 0 0, 1, 0 1, 1, 0 1, 0, 0 

 
Step 4 finds all the intersection points Pk(xk,yk,zk) of R and all the planes PT using equation set 

1. This equation set is derived by plugging the line equation (Eq. 4) into the plane equation (Eq. 3) 
from the perspective of x. 

Equation Set 1:  

  

 

 

It is important to note that if the end points (Pb and Pbni) of the ray casted have the same values for 
x then the intersections will not be defined using equation set 1 due to dividing by zero error. 
Therefore, equation set 2 is needed which is derived in the same manner as equation set 1 but from 
the perspective of y.  

Equation Set 2:  

 

  

zk = zb 
A similar problem will occur as noted above if the endpoints of the ray have the same values of 

y since division by zero is not allowed. Therefore, equation set 3 is needed which is derived in the 
same manner as equation set 2 but from the perspective of z.   

Equation Set 3:  
xk = xb 
yk = [(ybni-yb)/(z-zb)](x-zb) +yb 
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To summarize the choice of how to select an equation for calculating the intersection, Table 2 

is created. It lists all eight cases that can exist on whether the values of x, y or z of R’s endpoints are 
equal. For each case, the equation set(s) that are appropriate to use are listed.  

Table 2. List of equation sets that may be selected based on coordinates of Pb and Pbni 

Case # X1=X2 Y1=Y2 Z1=Z2 Equation set to use 

1 false false false 1 or 2 or 3 

2 false false true 1 or 2 

3 false true false 1 or 3 

4 false true true 1 

5 true false false 2 or 3 

6 true false true 2 

7 true true false 3 

8 true true true Not possible 

 
There is one exception where all three equations sets fail, which happens when PT is parallel to 

R. In this case, either there is no intersecting point since PT and R are parallel or there are an infinite 
number of intersections because R is on PT. No intersection points can be found in either case. 

Given the intersection point Pk(xk,yk,zk) calculated above, two checks must take place. One is 
that only one side of the ray going through Pb(xb,yb,zb) is used to determine intersecting voxels. The 
second check is to ensure that Pk(xk,yk,zk) is inside the triangle patch whose plane intersected the 
ray. 

The second check is done as follows. Given triangle patch Ti with vertices (A,B,C) and line 

segments ,  and as in Figure 3, Pk(xk,yk,zk) is inside Ti if it passes the following three 
conditions.  

I) The point is on the same side of segment AB as that of vertex C, 
II) the point is on the same side of segment AC as that of vertex B, and 
III) The point is on the same side of segment BC as that of vertex A.  

 
Figure 3. Figure on the left is an enlarged portion of the surface model on the right. The image on 

the left shows a set of rays being casted from a voxel and intersected with the plane of a triangle 
patch in order to classify the voxel as inside or outside the surface model. 

 
The three conditions are mathematically satisfied by the corresponding equations below 

followed by the dot product of each condition’s result given by . When the dot 

product is greater than or equal to zero, then  and  are pointing in the same direction which 
means the point is inside the triangle, otherwise, it is outside.  

Condition 1 Equation: 
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Condition 2 Equation: 

 

 
Condition 3 Equation: 

 

 
Step 5 accumulates the number of intersections that each ray had. Step 6 classifies a voxel as 

inside or outside the surface model using Eq. 5 [11], which takes in the number of rays Rn, and the 
number of intersections for each ray In to calculate a score for Pb(xb,yb,zb), which is used to classify it 
as inside or outside the surface model when the score is 0 or 1, respectively [11].  

       (4) 

Finally, in step 7, all voxels classified as inside are assigned a nonzero intensity (e.g. 100) and all 
outside voxels are given an intensity of 0 creating a volume model. 

3D Computational Complexity Analysis 

The above method iterates through all the bounding box’s voxels (m*n*r) and intersects the 
casting rays with all Ti triangle patches of the surface model. Therefore the complexity is 
O(m*n*r*Ti). As a side note, methods in other literature look at only O(Ti)  because their goal is to 
classify one test voxel and not to find all the inside voxels. An example of the 3D method’s 
complexity would be, given a bounding box with dimensions 90*90*102 = 826,200 and a surface 
model with 52,000 patches then the required number of operations is approximately 43 billion 
operations. On the laptop we tested on, calculating an intersection with all Ti for each voxel takes 
approximately 500 milliseconds. This means that for the given 826,200 operations, calculating an 
intersection will take 826,200*500 = 413,100,000 milliseconds. Therefore, using the 3D method to 
convert the example surface model to a volume model can take up to 5 days (~115 hours). 

2D Method 

The complexity computed in the previous section for the 3D method is high. The number of 
triangle patches Ti is usually huge. The problem is that there is no way to reduce Ti except using 
decimation. However, even after performing such a step, in a reasonable way, it will still result in Ti 
being large for a fairly complicated real surface model. A feasible way to lower this complexity is to 
reduce the number of times the triangle patches are visited (the number of times a ray is intersected 
with all triangle patches). This is the premise for the 2D method.  

A good way to reduce the computational complexity is to reduce the space from a 3D space to 
a 2D space prior to performing ray casting. To do so, the model is cut by planes in an arbitrary 
direction and at an arbitrary sampling rate resulting in 2D contours (i.e. polygon). Each voxel in the 
2D contour space is now classified as inside the contour, and hence inside the surface model, by 
casting a ray and counting the number of intersections with the edges of the contour which is a 
significantly less than the number Ti. Therefore, the 2D method could result in  significantly less 
complexity.  

At a high level, this method commences by cutting the 3D surface model resulting in a set of 
2D contours.  Rays are then casted from every test voxel within the 2D contour’s space classifying 
the voxel as inside or outside the contour, hence inside or outside the surface model, based on the 
number of intersections the rays have with the contour’s edges. The high level steps are as below 
followed by a detailed explanation of each step. 

1. Create a 3D bounding box for the surface model. 
2. Select a direction and a sampling rate for that direction to cut the surface model. 
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3. Intersect the surface model by parallel plane, Pi at each sampling point forming 2D 
contour(s). 

4. Calculate a 2D bounding box for each 2D contour. 
5. For each voxel on the cutting plane Pi cast a set of 2D rays with random slopes and count 

the number of intersections. 
6. Steps 6 and 7 from the 3D method and then used to create the final volume model. 
Step 1, a 3D bounding box for the surface model is created in the same manner as the 3D 

method. Step 2, the 3D bounding box is sampled in one direction. Step 3, at each sampling step, a 

plane Pi, i  {1,...,q}, is intersected with the surface model, as illustrated in Figure 4. In other 

words, Pi is intersected with all Ti. The intersection process occurs against the three line segments 

of Ti using equation set 4. The intersection points are then connected forming a 2D contour (see 
Figure 5 for an example). 

 

Figure 4. Plane slicing - Surface Model Ms being sliced by plane Pi 

 

Figure 5. A contour from a surface model 

Equation Set 4: 

 

y = yi +[(yj-yi)/(xj-xi)](x-xi) 
z = zi +[(zj-zi)/(xj-xi)](x-xi) 

The equation has the same exceptions as that of the 3D method and hence similar equations 
can be derived using the same manner of that in the 3D method with the perspectives of y and z. 
Hence, the same equation set selection process needs to be used here as that one in the 3D method 
when performing an intersection. 

Step 4, a 2D bounding box is computed for each contour. While iterating through the 2D 
bounding box, step 5 classifies each voxel as inside or outside the contour. This is done by casting a 
set of rays, with random slopes m, from each point in the bounding box, Pb(xb,yb) and then 
intersected with contour’s edges. Let each contour edge have two endpoints edge start (Xes,Yes) and 
edge end (Xee,Yee). To test whether there is an intersection voxel Pk(xk,yk) , equation set 5 is used.   

Equation Set 5: 
x = [(m*Xpoi-Ypoi+Yes)(Xee-Xes)-Xes(Yee-Yes)]/[m(Xee-Xes)-(Yee-Yes)] 
y = Ypoi + m*(x-Xpoi) 

A few checks must take place to ensure that the Pk can be counted as an intersection voxel. 
First, Pk must be within the edge’s endpoints (Xes,Yes) and (Xee,Yee). The second test is to verify 
whether all the intersecting points are on one side of (Xpoi,Ypoi). This is because a ray could cause 
intersections on both sides of (Xpoi,Ypoi) if for example (Xpoi,Ypoi) is in the middle of the model. To 
do this, the dot product must be calculated. Given the first intersected point (Xfi,Yfi), and the new 
intersect point, (Xni,Yni), calculate the dot product using Equation 6. 

dotProductValue = [(Xfi-Xpoi)*(Xni-Xpoi)] + [(Yfi-Ypoi)*(Yni-Ypoi)]    (6) 
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Using the same process as that of 3D with the result of the dot product, the intersection voxel 
is either counted or not. Finally, in step 6, using the same scoring method and volume model 
creation technique as that of the 3D method, the volume model is created.  

Special Case when Cutting by Z 

Typically in medical imaging, the surface model will be intersected with a special plane Pi, 

i{1,...,q} which goes through the z-axis. In plane Pi, the value for z is set to a constant k and the 
values of a and b are 0. Therefore, the equation for Pi is simply z=k and the intersection point can 
be calculated using Equation Set 6.  

Equation Set 6: 
Pi: z = k 
x = [(k-zi)/(zj-zi)](xj-xi) + xi 

y = [(k-zi)/(zj-zi)](yj-yi) + yi 

2D Computational Complexity Analysis 

The above method has two major steps.  First is cutting the model (i.e. intersecting all triangle 
patches) by q number of planes, which has complexity O(q*Ti). Note that q is significantly less than 
m*n*r, which was the number of times the triangle patches were visited in the 3D method. Using 
the example in the last part of the previous section and assuming q=100, this means 

 times reduction in visiting triangle patches.  
Second is classifying a voxel as inside or outside within the 2D contour whose complexity is the 

number of edges. The number of edges e in a 2D contour is significantly lower than the number of 
triangle patches Ti since only a very small fraction of triangle patches intersect with each cutting 
plane. Therefore, the complexity of step 2 is O(m*n*e). The overall complexity is O(q*Ti) + O(m*n*e) 
which is much smaller than the 3D complexity of O(m*n*r*Ti). 

1D Method 

The motivation of the 1D method is to create a volume model from a surface model with less 
computational complexity than that of the 2D method by reducing the number of edge visits for 
each 2D contour. Similar to how the number of triangle visits were significantly reduced in the 
previous approach, limiting the number of edge visits has promising potential. In the previous case, 
only the triangles intersecting a plane were considered, so in 1D we only visit edges intersecting a 
line. For the sake of simplicity, this line is chosen parallel to the y-axis as previously the plane was 
chosen to be parallel to the xy-plane. Analogous to the previous approach, the number of 2D rays 
casted would be significantly reduced using the 1D approach.  

The 1D method works as follows. In the same manner as the 2D method, a set of 2D contours 
are created. Given the 2D contours, an arbitrary sampling direction (see the horizontal axis in 
Figure 6 for an example) and an arbitrary sampling rate are determined. A ray perpendicular to the 
sampling direction is casted at each sampling step, denoted by Ri with slope mi and y-intercept hi 
(see Equation Set 7). The ray Ri is then intersected with all the edges of the contour, where each 
edge is represented as Rm with slope mm and y-intercept hm. In order to calculate the x intersection, 
R and Rm are intersected resulting in equations for x and y (see equation set 7) which are the 
intersection point. 

Equation Set 7: 
Ri: y = mix + hi 

Rm:: y = mmx + hm  
x = (hm-hi)/(mi-mm) 
y = mi [(hm-hi)/(mi-mm)] + hi 
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Figure 6. 1D Method - Filled in circles are voxels that are classified as inside the contour while 
open circles are voxels classified as outside the contour. The circles with an “x” are the intersection 

points and are counted as inside 

Using the intersection points calculated above, all the voxels along the ray can be easily 
classified as inside or outside the surface model using the following three cases. In the first case, no 
edges intersect the ray and therefore all the voxels along the ray are classified as outside. In the 
second case there is only one intersection with the ray and therefore only the intersection voxel is 
classified as inside and the rest are classified as outside. Finally, the third case is that there is more 
than one intersection with the ray. In the case of more than one intersection, all the voxels from the 
beginning of the ray to the first intersection are classified as outside and all the voxels after the first 
intersection until the second intersection are classified as inside and this pattern alternates until the 
end of the ray is reached. See Figure 6 above for an illustration of this method. In this case, we 
assume that all the voxels on the border of the field of view are outside. Finally, using the same 
scoring method and volume model creation technique as that of the 3D method, volume model is 
created. There are four special cases provided below.  

I) mi is undefined and hence no intersection point exists.  
II) if mm = mi, then the edge and ray casted are parallel and hence no intersection point exists. 
III) if the x value of the ray casted is outside the endpoints of the edges then no intersection is 

checked.  
IV) There is a special case in which the direction of the ray selected is perpendicular to an axis, 

which simplifies the method.   Let us assume that it is perpendicular to the -axis as 
Figure 6 above shows. In this case, ray casting will happen as follows. Given this 

special case, Equation Set 7 reduces to Equation Set 8 in which  is simply the value 
of the sampling step.  

Equation Set 8: 

  

  

 

 
Given all the intersection points, the classification and volume creation processes proceed as in 

the general case.  

1D Computational Complexity Analysis 

The above method has two major steps. The first major step is cutting the model which is the 
same as that of the 2D method and has a complexity of O(q*Ti). The second major step is 
classifying a voxel as inside or outside the 2D contour whose complexity is the number of rays 
casted parallel to the y-axis.  The number of rays casted is constant (resolution of the image in the x 
direction) and limited to the edges where the x value of the casted ray is between the endpoints of 
the edges. Thus, the number of edges to be intersected with the casted ray is independent of the 
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total number of contour edges and is a small and fairly constant number. Hence this step has the 
complexity of O(1) as compared to 2D’s voxel classification step’s complexity of O(m*n*e). 
Therefore, the overall complexity to find all the points inside a surface model using the 1D method 
is O(q*Ti) + O(1). 

Implementation Details, Technologies Utilized and Datasets 

This program is created using .NET Framework 4.0. Within this project, various technologies 
were integrated together to streamline the conversion of a surface model to a volume model. These 
technologies include Visualization Toolkit (VTK), Imaging Toolkit (ITK) and ClearCanvas. All 
three libraries, VTK, ITK and ClearCavas, have been built to run on C# .NET framework 4.0. It 
should be noted that both the VTK library and the ITK library are written in C++ and therefore, 
CMAKE was used to create the C# DLLs from the native C++ code. Figure 7 depicts the overall 
system architecture. 

 

Figure 7. Overall system architecture 

Simulated Dataset  

The simulated dataset consists of models generated with varying number of triangle patches 
and complexities. The number of triangle patches is simply the number of triangles that make up 
the surface model. The models’ complexity is measured using the surface model representation. 
One way to do this is to calculate the ratio of the total surface area of the surface model divided by 
the volume of the surface model; generally referred to as the specific surface area which we simply 
consider as a measure of Complexity (Eq. 7).  

Complexity = [Surface Area (Mi)]/[Volume (Mi)]      (7) 

In order to generate the models, the following parameters were used and can be depicted in 
Figure 8(a).  

1. Radius 1, R1, used to generate the inner radius 
2. Radius 2, R2, used to generate the outer radius 

3. Number of stripes, w, where each stripe Si, i  {1,…,w}, has radius R3i and thickness h 

Real Dataset 

The Deep Perisylvian Area (DPSA) Segmentation and Surface Reconstruction from MR data 
were acquired on a GE Signa 3 Tesla scanner using a T1-weighted spoiled gradient echo (SPGR) 
pulse sequence with the following parameters: TE = 4.288 ms, TR = 9.872 ms, matrix size = 256 × 
256; FOV = 240 mm × 240 mm; slice thickness = 2 mm, 124 slices without gaps. A semi-
automated thresholding method was used to segment the gray matter. The threshold was set so that 
apparent contiguity between the DPSA and nearby subcortical structures (e.g., external capsule, 
putamen) was minimized. Where any scant contiguity remained on the segmented image as a 
consequence of partial volume and signal-to-noise effects, a manual separation was performed to 
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isolate the DPSA. The marching cubes method as described earlier was then applied to construct 
the surface model of the structure. 

 

Figure 8. Simulated Data Creation Parameters. Surface (a) and volume model cross sections (b-d) 
representations 

The evaluation consists of accuracy and computational complexity analyses (duration). For 
computational complexity, we simply consider duration of how long the method ran for. The 
duration was calculated using a laptop with 8 GB of memory, 1 socket (2 cores) with 4 logical 
processers at 2.10 GHz and a solid state drive.  

Results 

In order to evaluate the methods proposed, eleven simulated models were generated using the 
parameter values given in Table 3; and 20 real models of the human brain DPSA were used. Figure 
8(b-d) above contains orthogonal cross sectional views of the simulated volume model.  

Table 3. The parameters and complexity of the simulated models 

Models ID R1** R2*** Si**** R3i Triangles 

SM*1 30 50 0 N/A 21,148 

SM 2 30 50 1 55 23,030 

SM 3 30 50 2 55 24,840 

SM 4 30 50 2 Random sizes 25,852 

SM 5 30 50 3 Random Sizes 23,921 

SM 6 30 50 2 60 48,898 

SM 7 30 50 4 60 76,868 

SM 8 30 50 5 60 89,980 

SM 9 30 50 7 60 115,691 

SM 10 45 50 5 75 94,171 

SM 11 45 50 7 75 121,724 
*SM: Simulated Model 
**R1: Radius 1 used to generate the inner radius of the simulated data 
***R2: Radius 2 used to generate the outer radius of the simulated data 
****Si: Number of stripes included in the simulated data 
R3i: Radius of the stripes Si 

 
1. Radius 2, R2, used to generate the outer radius 

2. Number of stripes, w, where each stripe  Si, i  {1,…,w}, has radius R3i and thickness h 

Table 4 contains visualizations of all the real surface models and four of the simulated surface 
models.  
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Table 4. M 1 - M 20 represent the surface model of the real dataset. SM 1, 2, 7 and 11 represent a 
surface model of a subset of the simulated dataset 

      
M* 1 M 2 M 3 M 4 M 5 M 6 

      
M 7 M 8 M 9 M 10 M 11 M 12 

      
M 13 M 14 M 15 M 16 M 17 M 18 

    
 

 
M 19 M 20 SM** 1 SM 2 SM 7 SM 11 

*M: Model; **SM: Simulated Model 

 
In order to calculate the accuracy of the method, four models are used; the original surface 

model (S1), the original volume model (V1), the generated surface model (S2) and the generated 
volume model (V2). Using those four models, accuracy is measured by calculating the ratio of the 
intersection of V1 and V2 and the union of V1 and V2. Note that intensities that were 0 in V1 and 
stayed 0 in V2 are considered background voxels and hence are not counted. The formal equation 
to measure accuracy is provided in Eq. 8. 

Accuracy = (V1V2)/(V1V2)       (8) 

The results of accuracy and duration of applying 2D and 1D methods on the simulated dataset 
are presented in Table 5. The Simulated Model (SM) IDs in Table 5 match those in Table 3. Note 
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that there are no results for the 3D method because when it was tested for SM 1, it took several 
hours to finish a few of the many slices. Extrapolating that duration, we estimated that it would 
take about 9,867 minutes which is equivalent to 164 hours, and hence slightly under a week to 
complete the conversion. Therefore, the 3D method is not feasible and so the timings were not 
recorded. Furthermore, both the 2D and the 1D methods had an average accuracy of over 99.7%. 
However, the 1D method was 3.75 times faster than the 2D method of 300 and 80 seconds, 
respectively, in average. Therefore, the 1D method is preferable and is the only method tested 
against the real dataset. In addition, for the real dataset, the duration in seconds were all either one 
or two seconds and hence milliseconds was used to evaluate the 1D method’s accuracy and 
duration for the real dataset instead of seconds. Table 6 contains the accuracy and duration in 
milliseconds of applying only the 1D method to the real dataset. 

Table 5. Results of 2D and 1D methods applied to the simulated dataset 

SM ID 2D A (%) 2D D (sec) 1D A (%) 1D D (sec) Complexity Triangles 

1 99.92 144 99.72 27 10.16 21,148 

2 99.90 150 99.73 28 10.62 23,030 

3 99.92 159 99.72 31 10.97 24,840 

4 99.93 160 99.73 32 11.23 25,852 

5 99.88 153 99.66 33 10.61 23,921 

6 99.91 270 99.76 68 16.36 48,898 

7 99.91 405 99.78 105 18.32 76,868 

8 99.78 386 99.79 119 20.85 89,980 

9 99.90 414 99.72 152 29.35 115,691 

10 99.87 495 99.62 129 31.58 94,171 

11 99.65 537 99.42 149 46.26 121,724 

SM = simulated model; A = accuracy; D = duration 

Table 6. Results of 1D method applied to the real dataset 

Model (M) ID 1D Accuracy (%) 1D Duration (ms) Complexity Triangles 

M 1 98.25 1,936 52.86 7,126 

M 2 98.83 1,535 40.46 6,352 

M 3 98.12 1,629 50.00 7,242 

M 4 97.10 2,376 80.40 8,666 

M 5 97.31 1,348 45.92 6,740 

M 6 99.12 1,563 40.16 7,104 

M 7 98.13 1,373 41.55 4,707 

M 8 99.01 1,551 43.27 6,410 

M 9 98.52 1,408 69.72 5,605 

M 10 98.79 1,080 44.67 3,966 

M 11 98.50 1,944 60.55 8,524 

M 12 98.73 1,374 50.22 6,254 

M 13 98.11 1,421 52.44 4,634 

M 14 98.60 1,258 48.83 3,459 

M 15 97.78 1,212 46.49 5,018 

M 16 97.31 1,403 65.45 5,535 

M 17 97.38 1,428 72.94 7,049 

M 18 97.86 2,064 54.35 8,460 

M 19 97.26 1,679 63.83 7,546 

M 20 98.83 2,294 47.97 9,324 

 
In order to analyze the data from Tables 5 and 6, a set of figures have been generated. Figures 

9 – 12 plot the effect that the number of triangle patches a model contains and the effect of the a 
model’s complexity has on the the surface to volume conversion duration for both simulated and 
real data, respectively.  
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Figure 9. Trend line illustrating simulated data duration vs number of triangle patches 

 

Figure 10. Trend line illustrating real data duration vs number of triangle patches 

 

Figure 11. Trend line illustrating simulated data vs complexity 

 

Figure 12. Trend line illustrating real data vs complexity 

Figures 13 and 14 are used to examine whether there is a trend between a model’s complexity 
and the number of triangle patches it contains for both simulated and real data, respectively.  

 

Figure 13. Trend line illustrating simulated data complexity vs number of triangle patches 



Sarmad ISTEPHAN, Mohammad-Reza SIADAT 
 

24 Appl Med Inform 34(2) June/2015 
 

 

Figure 14. Trend line illustrating real data complexity vs number of triangle patches 

Finally, Figures 15 – 18 visualize the effect of a model’s complexity and the effect of the 
number of tirangle patch’s a model contains on the accuracy of the surface to volume conversion 
for the real and simulated data, respectivley.  

 

Figure 15. Trend line illustrating simulated data accuracy vs complexity 

 

Figure 16. Trend line illustrating real data accuracy vs complexity 

 

Figure 17. Trend line illustrating simulated data accuracy vs number of triangle patches 

 

Figure 18. Trend line illustrating real data accuracy vs number of triangle patches 
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Since sampling is used to convert from surface space to volume space, a discretization effect 
will take place which is illustrated in Figure 19. 

 

 

Figure 19. Discretization effect of converting a surface model to a volume model. The border of 
the continuous model in light gray and the borders of the voxels in white. 

1D method compared to state of the art point ray casting method 

In this section the duration of the 1D method is compared to VTK’s PointInPolygon method 
(simply referred to as Ray Casting). 

The data in Table 7 provides a summary of the results for comparing the 1D method to Ray 
Casting. Figure 20 demonstrates the conversion duration of the 1D method compared to Ray 
Casting. 

Table 7. Results of Ray Casting compared to 1D method 

Number of Vertices Ray Casting (ms) 1D (ms) Ray Casting / 1D Ratio 

432 208.24 32.76 6.36  

730 639.91 30.57 20.93  

962 1,598.96 32.35 49.43  

1,050 1,653.59 36.53 45.27  

1,276 3,648.83 37.85 96.40  

1,312 3,255.02 32.26 100.90  

1,330 4,525.55 33.16 136.48  

1,486 4,049.78 32.81 123.43  

1,492 3,169.1 31.54 100.48  

1,560 5,942.87 30.13 197.24  

16,137 -- 84.8  --  

 

 

Figure 20. Trend line illustrating the duration of Ray Casting vs 1D Method as the number of 
vertices increase 
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Discussion 

Surface to Volume Conversion using Proposed Method 

Analyzing the results from Tables 5 and 6, the following observations can be made for the 1D 
method. First, the more triangle patches the simulated model contains, the longer the duration for 
surface to volume conversions (Figure 9). In general, this is also true for the real dataset (Figure 10). 
Second, the simulated models’ complexity loosely follows the duration pattern with one anomaly 
(indicated by an arrow in Figure 11). However, the real data does not follow such a pattern (Figure 
12).  

The two observations above can be explained by the fact that a simple (non-complex) model 
can be generated using many triangle patches and vice versa. Thus, there is not a strong correlation 
between the complexity of the model and the number of triangle patches, as illustrated in Figure 13, 
for the simulated dataset. This is even more apparent in the real dataset where there is no 
correlation (Figure 14). As discussed in the method section, the dominant factors influencing 
duration in the proposed method are the number of triangle strips and the number of triangle 
patches that need to be cut as shown in the first observation. Therefore, in general, we do not 
expect the duration to have a linear correlation with complexity as shown in the second 
observation. 

The third observation is that the more complex the simulated model is, the lower the accuracy 
of the surface to volume conversions (Figure 15). The anomaly in Figure 15 can be discarded as the 
first three complexity values are practically the same. For the real data (Figure 16), an overall 
decreasing trend is evident. The correlation between the accuracy and the model complexity can be 
explained by the fact that the more complex the model is the more surface area it would have for a 
given volume. More surface area means that there are more voxels that make up the border of the 
surface model. Figure 19 shows a few voxels (white boxes) on the border (light gray) of a model 
where the effect of discretization is evident. If the center of a given voxel is inside of the border, 
the voxel is classified as inside. This can obviously present an inaccuracy as part of the voxel is in 
fact outside of the model. More border voxels can imply higher inaccuracies and therefore more 
complex models would show higher inaccuracies. This is observed in Table 5 with an average 
complexity of 19.7 resulting an average accuracy of 99.7% compared to the results in Table 6 with 
an average complexity of 53.6 resulting in an average accuracy of 98.2%. One may note that other 
factors like asymmetry can contribute to higher inaccuracy rates. 

The fourth observation is that the simulation model’s accuracy versus the number of triangle 
patches are not correlated (Figure 17), which is even more evident for the real dataset (Figure 18). 
Therefore, among the two measures of model complexity and the number of triangle patches, the 
former correlates well with accuracy and the latter correlates better with the duration of the surface 
to volume conversion using the 1D method. 

The worst performance, from the accuracy point of view, shows less than 1% deviation from 
the original volume model for simulated datasets. Even for a relatively large SOI such as DPSA, the 
method shows less than 3% deviation. Given the fact that the segmentation accuracy that is either 
manual or automatic is much lower [38], this method would be adequate to be used in a medical 
application.  

1D Method Compared to State of the Art Point Ray Casting Method 

Analyzing the results in this table indicate that finding all of the points inside a given polygon 
with less than 2,000 vertices is up to 200 times faster using the 1D method than using the Ray 
Casting method. Furthermore, as the number of vertices is increased, the 1D method stays fairly 
constant while the Ray Casting method increases at least linearly, which is apparent in Figure 20. 

It is important to discuss when ray casting can result in false negatives.  Two primary scenarios 
that we have seen in the literature are the tangent line and rounding errors issues. First, if the ray 
being casted is tangent to the model, then false negatives could occur.  However, this has an 
extremely low likelihood in the order of 10-400 [13]. Therefore, this is not of major concern for 3D 
and 2D methods due to the extremely low likelihood. The proposed 1D method does not suffer 
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from the tangent line case because we only count an edge intersection if the intersection is between 
the endpoints of the edge and not the vertex itself. Second scenarios for false negatives can occur 
due to rounding errors, which may occur for points very close to the boundary. Within the 
literature we have seen, all of the methods employ a rounding factor causing potential classification 
errors. However, this is a common issue for any method implemented on a finite precision 
arithmetic machine.  

In this work, the way we have arrived at the 2D method from the 3D method using complexity 
analysis provided the pattern that we later applied on 2D method to arrive at 1D. In other words, 
we have proposed a natural progression that results in 1D method which is a novel and extremely 
fast approach. As discussed in the method section, the complexity of the 1D algorithm is O(q*Ti) + 
O(1). Most literature that finds points inside a 2D polygon express complexity in terms of the 
complexity of classifying a specific voxel inside a 2D polygon [39-42]. In our 1D method, this 
specific task is done in O(1). Furthermore, the 1D method is efficient because our requirement is to 
find all the points inside the surface model, which is a more relaxed requirement compared to 
classifying a specific voxel as inside. The latter is the requirement in all the literature mentioned 
above [39-42].  To the best of our knowledge there exists no method with such an efficiency. 

Overall Query 

A typical query consists of two parts. The first part of the query is to narrow down the number 
of subjects being examined based on structured data such as date of birth, gender and other 
demographics information. The second part of the query is based on the unstructured content of 
the image and is usually more time consuming. Let us consider a hypothetical case of a medical 
database with hundreds of thousands of patients, a typical query may first be filtered to the top 100 
subjects using structured data. The unstructured data within the returned 100 subjects narrowed 
down to five structures of interest along with their contralateral part result in 1,000 models to be 
converted and queried. Based on Table 6, a relatively complicated model, such as the DPSA, 
requires an average of 1.5 seconds to be converted. Therefore, converting all 1,000 models in the 
given scenario takes under half an hour. One may note that the times we reported in Table 6 are 
based on a laptop with limited computational power and could be significantly faster when using a 
powerful server. More importantly, it must be noted that this step could be an offline step.  

Conclusion and Future Work 

Having a system that takes an input of a volume model or a surface model and is able to 
convert between them is critical. The need to have both forms of the model is important because 
there are some quantitative calculations that are easier done using the volume model and some that 
are easier done using the surface model. The main contribution of this work was to provide a 1D 
method that is able to convert a surface model to a volume model with better efficiency that what is 
found in the current literature. In addition, the methodology proposed by the natural progression 
from 3D to 2D was quite novel and inspired the development of the 1D method. Overall, the 
results indicate that the conversion process is not lossless. However, the amount of data lost is very 
little and may not jeopardize the surface model’s features. The 1D method proposed in this paper is 
sufficient in converting the surface model to a volume model in terms of accuracy and time 
requirements. Therefore, it can be used in real life radiological systems capable of querying different 
aspects of the structure of interest and thus the content of medical images.  

With the ability to efficiently convert a surface model to a volume model, as a future work we 
can build a general framework of an unlimited query module where feature extraction occurs on 
demand, rather than precalculated, and stored in the database as shown in Figure 1. Depending on 
the features of interest (volume features or surface features), the query engine will invoke the 
proper conversion method if the model is not available in the desired format (volume or surface). 
The query engine communicates with the feature extraction module to calculate specific features on 
demand using the converted models.   
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Equations’ Symbols 

PT: Plane for Triangle Patch T 
M: Matrix consisting of vertices’ coordinates 
1: vector containing elements [1 1 1] 
n: normal vector   
R: Set of Rays 
(xb, yb, zb): A point within the 3D bounding box 
(xbni, ybni, zbni): A point within the 3D neighboring structure to the bounding box 
Pk(xk,yk,zk): Intersection Point k 
AB: Segment of the given triangle patch 
AC: Segment of the given triangle patch 
BC: Segment of the given triangle patch 
Rn: Number of rays 
Ti: Number of triangle patches 
Pi: Plane used to cut the surface model 
(xi, yi, zi), (xj, yj, zj): Endpoints of a triangle patch’s segment  
m: Random slope 
(Xpoi, Ypoi): coordinates of the point of interest being tested 
(Xes, Yes), (Xee, Yee): Edge start and Edge end points of the 2D contour 
(Xfi, Yfi): First intersection point found 
(Xni, Yni): New intersection point found 
Pi: Special plane which goes through the Z-axis 
Ri: Ray generated at various sampling steps 
mi: Slope of ray Ri 

hi: y-intercept of ray Ri 
Rm: Edge point of 2D contour 
mm: Slope of edge point of 2D contour 
hm; y-intercept of edge point of 2D contour 
xo: Value of x at the x-axis sample location 
Mi: The given model 
V1: Original volume model generated from simulation or segmentation 
V2: Volume model generated from conversion method  

Conflict of Interest 

The authors declare that they have no conflict of interest. 

References 

1. Dimitrovski I, Kocev D, Kitanovski I, Loskovska S, Dzeroski S. Improved Medical Image 
Modality Classification using a Combination of Visual and Textual Features. Comput Med 
Imaging Graph 2015:39:14-26. 

2. Srinivas M, Mohan C. Medical Images Modality Classification using Multi-Scale Dictionary 
Learning. 19th International Conference on Digital Signal Processing 2014:621-625. doi: 
10.1109/ICDSP.2014.6900739 

3. Deliabsis KK, Kechriniotis A, Maglogiannis I. A Novel Tool for Segmenting 3D Medical 
Images Based on Generalized Cylinders and Active Surfaces. Comput Methods Programs 
Biomed 2013:111:148-165. 

4. Roobottom CA, Mitchell G, Morgan-Hughes G. Radiation-Reduction Strategies in Cardiac 
Computed Tomographic Aangiography. Clin Radiol 2010;65:859-867. 

5. Organisation for Economic Co-operation and Development. [Internet] [cited 2 March 2015] 



Conversion of a Surface Model of a Structure of Interest into a Volume Model for Medical Image Retrieval 

 

[ 

Appl Med Inform 35(2) June/2015 29 
 

Available from: http://www.oecd.org 
6. Glatard T, Montagnat J, Magnin IE. Texture Based Medical Image Indexing and Retrieval: 

Application to Cardiac Imaging. ACM SIGMM International Workshop on Multimedia 
Information Retrieval 2004;135-143. 

7. Muller H, Michoux N, Bandon D, Geissbuhler A. A Review of Content-Based Image Retrieval 
Systems in Medical Applications- Clinical Benefits and Future Directions. Int J Med Inform 
2004;73:1-23. 

8. Lehmann TM, Güld MO, Thies C, Fischer B, Key-Sers M, Kohnen D, et al. Content-Based 
Image Retrieval in Medical Applications for Picture Archiving and Communication Systems. 
Proceedings of the SPIE Conference on Medical Imaging 2003;5033. 

9. Siegel E, Kolodner RM. Filmless Radiology. Springer; 2001. 
10. Medina JM, Jaime-Castillo S, Barranco CD, Campana JR. On the Use of a Fuzzy Object-

Relational Database for Flexible Retrieval of Medical Images. IEEE Transactions Fuzzy 
Systems 2012;20:786-803. 

11. Bueno JM, Chino F, Traina AJM, Traina Jr C. How to Add Content-Based Image Retrieval 
Capability in a PACS. IEEE Computer-Based Medical Systems Proceedings of the 15th IEEE 
Symposium 2002:321-326. doi:10.1109/CBMS.2002.1011397 

12. Jafari-Khouzani K, Siadat MR, Soltanian-Zadeh H. Texture Analysis of Hippocampus for 
Epilepsy. Proceedings of SPIE Image Processing Conference 2003;279-288. 

13. Siadat MR, Soltanian-Zadeh H, Fotouhi F, Elisevich K. Content-Based Image Database System 
for Epilepsy. Comput Methods Programs Biomed 2005;79:209-226. 

14. Liu Y, Zhang D, Lu G, Ma W. A Survey of Content-Based Image Retrieval with High-Level 
Semantics. Pattern Recognit 2007;40:262-282. 

15. Eakins J, Graham M, Franklin T. Content-Based Image Retrieval. Library and Information 
Briefings 1999. 

16. Antani S, Lee DJ, Long LR, Thoma GR. Evaluation of Shape Similarity Measurement Methods 
for Spine X-Ray Images. J Vis Commun Image Represent 2004;15:285-302. 

17. Ghosh P, Antani S, Long LR, Thoma GR. Review of Medical Image Retrieval Systems and 
Future Directions. IEEE Computer-Based Medical Systems 24th International Symposium 
2011;1-6. 

18. Hsu W, Antani S, Long LR, Neve L, Thoma GR. SPIRS: A Web-Based Image Retrieval System 
for Large Biomedical Databases. Int J Med Inform 2009;78:13-24. 

19. Chandrakar A, Thoke AS, Singh BK. Indexing and Retrieval of Medical Images using CBIR 
Approach. Advances in Parallel Distributed Computing 2011;393-403. 

20. Ramamurthy B, Chandran R. CBMIR: Content Based Medical Image Retrieval Using Multilevel 
Hybrid Approach. Int J Comput Comm Control 2015:10:3:382-389. 

21. Chowattanakul W, Rai HG, Krishna PR. An Efficient Shape Based Feature for Retrieval of 
Healthcare Literatures Using CBIR Technique. ACM Proceedings of the Fourth Annual ACM 
Bangalore Conference 2011;24. 

22. Thanellas AK, Pollari M. Compact Review of Structural and Microstructural Brain Image 
Analysis Methods. IEEE 23rd International Symposium Computer-Based Medical Systems 
2010;378-382. 

23. Bozzali M, Cercignani M, Caltagirone C. Brain Volumetrics to Investigate Aging and the 
Principal Forms of Degenerative Cognitive Decline: A Brief Review. Magn Reson Imaging 
2008;26:1065-1070. 

24. Thanellas AK, Pollari M. Sensitivity of Volumetric Brain Analysis to Systematic and Random 
Errors. IEEE 23rd International Symposium Computer-Based Medical Systems 2010;238-242. 

25. Rodriguez J, Ayala D, Grau S. VolumeEVM: A New Approach for Surface/Volume 
Integration. Computers & Graphics 2005;29:217-224. 

26. Celebi OC, Cevik U. Accelerating Volume Rendering by Ray Leaping with Back Steps. Comput 
Methods Programs Biomed 2010;97:99-113. 

27. Cruces R, Concha L. White Matter in Temporal Lobe Epilepsy: Clinico-Pathological Correlates 
of Water Diffusion Abnormalities. Quant Imaging Med Surg 2015:5:2:264-278. 

28. Spitler K, Tirol F, Fried I, Engel J, Salamon N. Diffusion Tensor Imaging Correlates of 

http://www.oecd.org/


Sarmad ISTEPHAN, Mohammad-Reza SIADAT 
 

30 Appl Med Inform 34(2) June/2015 
 

Hippocampal Sclerosis and Anterior Temporal Lobe T2 Signal Changes in Pharmacoresistant 
Epilepsy. Int J Epilepsy 2014:1:1-7. 

29. Liu M, Chen Z, Beaulieu C, Gross D. Disrupted Anatomic White Matter Network in Left 
Mesial Temporal Lobe Epilepsy. Epilepsia 2014:55:5:674-682. 

30. Styner M, Gerig G, Lieberman J, Jones D, Weinberger D. Statistical Shape Analysis of 
Neuroanatomical Structures Based on Medial Models. Med Image Anal 2003;7:207-220.  

31. Hosung K, Tommaso M, Bernasconi N, Bernasconi A. Surface-Based Multi-Template 
Automated Hippocampal Segmentation: Application to Temporal Lobe Epilepsy. Med Image 
Anal 2012;16:1445-1455. 

32. Heimann T, Meinzer H. Statistical Shape Models for 3D Medical Image Segmentation: A 
Review. Med Image Anal 2009;13:543-563.  

33. Jiang T, Shi F, Zhu W, Li S, Li X. Shape Analysis of Human Brain with Cognitive Disorders. 
Digital Human Modeling 2007;409-414. 

34. Shen D, Zhan Y, Davatzikos C. Segmentation of Prostate Boundaries from Ultrasound Images 
Using Statistical Shape Model. IEEE Transactions Medical Imaging 2003;22:539-551. 

35. Cootes TF, Taylor CJ. Anatomical Statistical Models and Their Role in Feature Extraction. Br J 
Radiol 2004;77:113-139.  

36. Lorensen WE, Cline HE. Marching Cubes: A High Resolution 3D Surface Construction 
Method. Computer Graphics 1987;21:4. 

37. Narkbuakaew W, Sotthivirat S, Gansawat D, Yampri P, Koonsanit K, Areeprayolkij W, et al. 
3D Surface Reconstruction of Large Medical Data Using Marching Cubes in VTK. The 3rd 
International Symposium on Biomedical Engineering 2008;64-67. 

38. Narkbuakaew W, Sotthivirat S, Gansawat D, Yampri P, Koonsanit K, Areeprayolkij W, et al. 
3D Surface Modeling and Clipping of Large Volumetric Data Using Visualization Toolkit 
Library. 13th International Conference on Biomedical Engineering 2009;1144-1148.  

39. Jimenez J, Feito F, Segura R. A New Hierarchical Triangle-Based Point-in-Polygon Data 
Structure. Comput Geosci 2009;35:1843-1853.  

40. Zalik B, Kolingerova I. A Cell-Based Point-in-Polygon Algorithm Suitable for Large Sets of 
Points. Comput Geosci 2001;27:1135-1145.  

41. Ye Y, Guangrui F, Shiqi O. An Algorithm for Judging Points Inside or Outside a Polygon. 
Seventh International Conference on Image and Graphics 2013:690-693. doi: 
10.1109/ICIG.2013.140 

42. Jian W, Zongyan C. A Method for the Decision of a Point Whether In or Not in Polygon and 
Self-Intersected Polygon. Eighth International Conference on Fuzzy Systems and Knowledge 
Discovery 2011:16-18. doi: 10.1109/FSKD.2011.6019594 


