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Abstract 
Time Frequency Signal Analysis and Processing (TFSAP) have been proposed in order to analyse 
the signal in both the time and the frequency domains. Electroencephalography (EEG) as a time-
varying frequency signal is an interesting field in which Time Frequency Distribution (TFD) could 
be used in order to visualize the simultaneous distributions of signal energy in different 
physiological and pathological brain states. Particularly, epileptic signals due to their great features 
of seizure activity are introduced as the most attractive research field among researchers. This study 
outlines an investigation on two main pathologic brain states including, pre-ictal activity and seizure 
activity compared to normal activity. Pseudo-Wigner -Ville and Choi-William distributions are used 
in order to visualize the energy content of signals in these states. Different segments of brain 
electrical activity are analyzed using these distributions. Finally, Renyi’s entropy as an important 
characteristic which offer insight towards the EEG signal processing has been extracted from 
TFDs. The results obtained indicate that Renyi’s entropy is a high-quality discriminative feature 
especially in alpha and delta sub-bands of the EEG signal. 
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Introduction 

Epilepsy has affected 1% of the population of the world and is characterized by intermittent 
abnormal firing of neurons in the brain [1]. Epileptic seizures are the result of this electrical 
disturbance and are distinguishable from the normal activity with regard to frequency and 
morphological pattern [1]. Because of the multifaceted nature of epilepsy, detection and 
identification of epileptic activity during the event or after it is an essential task in the diagnosis 
procedure. In this way electroencephalography plays an important clinical role for assessment of 
these changes and detection of seizures. Classification of EEG results, in light of epilepsy, has 
generated substantial interest, resulting in a voluminous body of literature [2-13]. EEG information 
used in these methods can be classified into 3 major categories: time domain-based methods, 
frequency domain-based methods and time–frequency analysis-based approaches [2-13].  

In the time domain algorithms, complexity scales, amplitude statistics or entropy measures 
proved to be more discriminative. Forrest et al. [2] have used the fractal property, Hjorth 
parameters and the amplitude statistics for distinguishing epileptic activity. Since entropy measures 
the complexity or the degree of disorder of the EEG signal, this feature has been used by Acharya 
et al. [3] for discriminating different EEG patterns. Guler et al. [4-5] used chaos measures for 
classification like Lyapunov Exponents (LE). However, the studies claim that EEG does not meet 
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the theoretical requirements for LE analysis [6]. 
From the spectral methods in this area one could suggest [7-8] in which spectral features are 

selected from seizure and non-seizure EEG signals by Gabor functions and Discrete Fourier 
Transform (DFT). Although in this study, the final performance has been improved by the 
additional information provided by the/an electrocardiogram (ECG).  

Wavelet transform is predominantly effective for representing various aspects of non-stationary 
signals. Adeli et al. [9] analyse the EEG signals of epileptic patients with absence seizure using 
wavelet transform and characterize epileptiform discharges in the form of 3-Hz spike and wave 
complex in these patients. As the decomposition of the original EEG into sub bands alters the 
original phase space and leads to new phase spaces, mixture of wavelet and Chaos methods proved 
to have better achievement. Adeli [10] used a Wavelet-Chaos methodology for analysis of EEGs for 
detection of seizure and epilepsy. 

Few researches have been conducted on joint time-frequency domain. The wide range 
application of time–frequency analysis has been reported in detection of seizure in neonates [11]. 
Recently, some researchers have presented their work in the TF domain for detection of epileptic 
adults [12-13]. Tzallas et al. [12] proposed a feature vector formed by splitting the TFD into a lattice 
and concatenating the total energy in each window with the total EEG energy. However, the 
features applied in Musselman’s work [13] were statistical features extracted from bilinear time–
frequency distributions (TFD) of the EEG signal.  

In this work, discrimination of epileptic activity has been discussed by means of Time 
Frequency Signal Analysis and Processing (TFSAP). TFSAP in contrast with the traditional time or 
frequency analysis considers the properties of the signal in both the time and the frequency 
domains [14]. Actually, TFDs could represent how the energy of the signal is distributed over the 
two-dimensional time-frequency space [14]. Hence, TFDs could be used in order to visualize the 
energy content of an EEG as a non- stationary time-varying frequency signal in different 
physiological and pathological brain states [15]. As mentioned before decomposition of signal may 
lead to a new phase space. So, by means of multiresolution wavelet analysis, the original EEG signal 
is decomposed into 5 sub-band (Delta (0 –4 Hz), Theta (4 –8 Hz), Alpha (8 –15 Hz), Beta (15–30 
Hz) and Gama (30–60 Hz) [10]. Afterwards, Renyi’s entropy as a time-frequency measure is 
compared in these sub-bands. This methodology seeks to extract time-frequency features in EEG 
and its sub-bands in order to show in a statistically meaningful way, how differences among time-
frequency properties may occur in certain sub-bands. The aim of this study was to compare joint 
time-frequency properties of brain electrical activity from different physiological and pathological 
brain states, using TFDs. 

Material and Method 

A. Dataset 

The EEG time series made available online by Dr. Ralph Andrzejak of the Epilepsy Centre at 
the University of Bonn, Germany [16] are utilized for evaluating the algorithm. This dataset 
contains five subsets of EEG signals (denoted A–E) each containing 100 single channel EEG 
segments. These segments were selected and cut out from continuous multichannel EEG 
recordings of patients from their archive after visual inspection for artefacts, e.g., due to muscle 
activity or eye movements [15]. 

Sets A and B have been acquired using surface EEG recordings of five healthy subjects. 
Volunteers were asked to be relaxed with eye- open (A) and eye- close (B), respectively. Sets C, D, 
and E are originated from countinuous EEG recordings of five patients with presurgical diagnosis. 
Segments in set C were recorded from the hippocampal formation of the opposite hemisphere of 
the brain while those in D from within the epileptogenic zone. Sets C and D contained only activity 
measured during seizure free intervals and set E only contained seizure activity [15].  

The sampling rate of the data was 173.61 Hz with 12 bit resolution. In this study, four data sets 
(A, B, D and E) were used. 
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B. Pre-processing 

In order to enhance signal to noise ratio (SNR) and remove power-line noise along with out-of-
band noise, the EEG time series were low-pass filtered using a low-pass FIR filter between 0 to 60 
Hz [10]. Matlab software was used for implementation of the algorithm. and all codes were written 
in matlab. Since the EEG signal is a real signal and for TFDs, the analytic signal is needed, the 
Fourier Transform of the signal is taken. Afterwards, inverse Fourier Transform is performed on 
the positive portion of the signal’s spectrum [11]. Using 4-level wavelet decomposition the 
following sub-bands are obtained: Gamma (30-60 Hz), Beta (15-30 Hz), Alpha (8-15Hz), Theta (4-8 
Hz), and Delta (0-4 Hz) [10]. 

C. Time Frequency Analysis 

Time-frequency analysis techniques are highly effective for signal processing especially in non-
stationary signals with time-varying frequency components. For this study, The Cohen’s class 
distributions are used which satisfy time and frequency covariance property [14]. In fact, these 
properties guarantee that, if the signal is delayed in time and modulated, its time-frequency 
distribution is translated of the same quantities in the time-frequency space. It has been shown that 
this distribution possesses the following general expression [14]: 

  dsdde)2s(x)2s(x),(fe)f;,t(C 2j*)ts(2j

x

∞

∞

∫∫∫  (1)  

where x is the selected signal and f is the kernel function for eliminating cross-term artifacts [14]. 

Different kernel functions have been designed to overcome this obstacle. In the next sections two 
different TFDs have been discussed.  

D. Wigner-Ville Distribution 

Wigner-Ville distribution (WVD) which is particularly interesting because of its simplicity is 
defined as equation (2):  

  de)2t(x)2t(x)f,t(W f2j*

x

∞

∞∫  (2)  

where * is the complex conjugate operator. Since the Wigner-Ville Distribution function is not a 
linear transform, the cross-term artifacts will occur in multi component signals or in non-linear FM 
signals [14]. These interference terms are troublesome since they may overlap with signals and thus 
make it difficult to visualize the WVD’s image. These interferences could be eliminated or reduced 
by windowed version of WVD. Actually, this windowing procedure is equivalent to frequency 
smoothing of WVD and called Pseudo- WVD (PWVD) [14]. For a given signal x, its PWVD is 
defined as:  

 de)2t(x)2t(x)(h),t(PW 2j*

x

∞

∞∫  (3)  

where h(τ) is a regular window.  

E. Choi-Williams Distribution 

Choi-Williams Distribution (CWD), proposed by Choi and William [17], is one of the Cohen’s 
class distributions which uses a gaussian kernel function to reduce cross – term interferences. That 
is why CWD is also known as the Reduced Interference Distributions (RID). In this distribution 
the kernel function depends only on the product of the variables τ and ξ in doppler-lag domain. 
The Equation (4) represents a kernel function for Choi-Williams distribution: 
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where σ is a real parameter which controls the cross-term reduction. Since, interference 
components occur far from the origin, this parameter is designed to be close to unity around the 
origin and exponentially decrease in regions far from the origin [11]. For further noise attenuation, 
one could use smoothing windows to the kernel in both time and lag directions [11]. The best 
choice for smoothing window might be a Hamming window with N point. N is the number of 
points of window considered for the sake of better resolution. 

E. Renyi’s Entropy 

Renyi’s entropy introduced in time-frequency analysis by Williams et al. [18] is interesting 
information which varies by the existence of the different EEG waveforms and events in their 
corresponding frequency. It is the generalized form of Shannon entropy which admits negative 
values in the distribution [14]. The Renyi’s entropy, applied on the TFD is given by Equation (5).  

 ∑∑
n k x2 )k,n(log

1

1
R 

 


  (5)  

where ρ is the histogram of the time–frequency coefficients and α is the order of Renyi’s 
information.From the limit case if α meet 1,the entropy converges to Shannon entropy. If the 
components are less separated in the time-frequency plane, the information measure will be 

affected by the overlapping of the components or by the interference terms [14]. In this work, 

Renyi’s entropy order of 3 is used for CWD. 
The mentioned TFDs were applied to A, B, D and E categories of the dataset which correspond 

to normal brain activity with eye-open, eye-close, pre-ictal and seizure activities, respectively. Signals 
from each category were first pre-processed in order to remove noise and eliminate artefacts. Then, 
pre-processed signals were converted into analytic form. After applying multi-resolution wavelet 
analysis using Coifman wavelet, each EEG signal along with its five sub bands go through TF 
analysis process. 

PWVD and CWD as two candidates for evaluation of our algorithm have some parameters to 
be chosen. Because there is no exact value to optimize the parameters against, these parameters 
were chosen to make sure that time-frequency components of the signal were represented clearly 
with minimum rate of cross-term interferences. As discussed in [11], for PWVD a hamming 
window with 105 points had the best results. Kernel width in CWD was set at 5 that could filter 
cross-terms without any over-smoothing. Finally, for smoothing windows of CWD again hamming 
windows of 15 and 151 points were used in time domain and lag domains, respectively. It was 
shown that a Hamming window of 15 points in time domain represents a good trade-off between 
resolution and cross-term elimination and for the lag smoothing window this parameter was set to 
151 points [11]. For evaluation of the distributions four subsets, namely, normal (sets A and B), 
pre-ictal (set D) and seizure or ictal activities (set E) of single channel EEG signals had been used. 

Results 

A. Normal Activity (eye-open vs. eye-close) 

Characteristically, the normal signal is a constant amplitude signal with no abnormal pattern. It 
can be said that in the normal signal there is no particular or regular patterns. Figure 1 shows 
PWVD of this kind of signals. The color legend for the heat maps show the energy level of the 
signal at a specific frequency. It is noteworthy that the energy of the signal in both (a) and  (b) is 
mostly concentrated below 5 Hz without any high frequency component or any regular pattern. 
The CWD of normal EEG is presented in Figure 2. Hence, CWD visualize the signal’s energy 
better than PWVD and calculation of Renyi’s entropy is done using this transformation. 
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Figure 1. PWVD of normal EEG signals. (a) Eye-open, (b) Eye-close 
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Figure 2. CWD of normal EEG signals. (a) Eye-open, (b) Eye-close 

The closing of eyes represents the imposing of such a constraint in dynamics resulting in the 

well-known physiological alpha rhythm.This could be approved by Renyi’s entropy measure which 
is lower in signals of set (A).  

B. Pre-ictal Activity 

The pre-ictal EEG data in set D was recorded intracranially from the same five epilepsy patients  
during seizure free intervals. All EEG segments in this subset were recorded from within the 
epileptogenic zone when there is no seizure.  

Figure 3 depicts results of applying PWVD and CWD on the exemplary pre-ictal activity 
segment. Even though energy of the signal in both PWVD and CWD is totally concentrated below 
5 Hz, the indications of periodic regular pattern are presented. This regular pattern which is almost 
similar to the seizure activity pattern (discussed in the next section) suggests that the pathological 
epileptic process imposes certain constraints on neuronal dynamics. Even in the absence of seizure 
activity these constraints appear to be reflected by periodic patterns in the EEGs from 
epileptogenic zones in the brain.  
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Figure 3. TFDs of pre-ictal activity EEG signal: (a) PWVD, (b) CWD 

C. Seizure Activity 

Epileptic activity can create clear abnormalities on a standard EEG. These abnormalities might 
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be defined as repetitive waves with any shape or amplitude, and often evolve with changes in 
frequency or shape. TFDs of this kind of signals are shown in Figure 4. In this Figure, part (a) is the 
PWVD of signal with seizure activity and part b shows the CWD of the same signal. It is clear that 
apart from whether seizure evolve in the duration of signal studied or not, these distributions 
consist of lines which appear to be parallel in the frequency direction.  

This regular pattern could be the indication of harmonics of the dominant frequency. However, 
CWD provides better time and frequency resolution. From the energy point of view, the results 
represent that most of the energy of the signal lie above 5 Hz with dominant spikes along with 
frequencies of about 10 Hz.  
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Figure 4. TFDs of seizure activity in EEG signal: (a) PWVD, (b) CWD 

Evaluation of discrepancies in Renyi’s Entropy between the three groups and their sub bands 
was performed using ANOVAs test. One-way ANOVA is used for comparing the means of these 
categories of data. The test returns the p-value under the null hypothesis that all samples in the data 
are drawn from populations with the same mean. P-value near zero suggests that at least one 
sample mean is significantly different than the other sample means. Common significance levels are 
0.05 or 0.01. It is observed from Figure.5 that this parameter yields a sufficient measure for 
quantification of the differences in the three groups. It is noteworthy that the p-value of the test for 
3 groups is much less than 0.05. 
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Figure 5. Renyi’s entropy range in (a) Seizure activity, (b) Pre-ictal activity and (c) eyes-open normal activity 

Renyi’s entropy of epileptic signals is more than normal signal’s entropy and confirms that these 
signals are more complicated and more disposed to have diversity, uncertainty, or randomness. 
Since CWD provides better time and frequency resolution the value of Renyi’s entropy is calculated 
using CWD.  This value for pre-ictal signals is lower than normal and epileptic activity which is 
shown in Figure 5. As indicated in Table 1 the entropy values in case of the alpha and delta 
subband for all groups differ significantly with? their P values being much less than 0.001. From the 
results in Table 1 it is clear that Renyi’s entropy might be a high-quality discriminative feature 
especially in alpha and delta sub-bands of the signal.  
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Table 1. P-values of Renyi’s entropy extracted from band limited EEG signals and their sub-bands 
in each group 

Signal Normal vs. seizure Pre-ictal vs. normal Seizure vs. pre-ictal 

Band limited EEG 0.02 <0.001 <0.001 

Gama sub-band <0.001 0.6 <0.001 

Beta sub-band <0.001 <0.001 0.5 

Alpha sub-band <0.001 <0.001 <0.001 

Theta sub-band 0.87 <0.001 <0.001 

Delta sub-band <0.001 <0.001 <0.001 

Discussion 

In this paper, the ability of TFDs to discriminate EEG signals from different physiological and 
pathological brain states was explored. For this purpose, two different distributions from Cohen’s 
class were selected for visualizing the energy content of brain electrical activity. Parameters of these 
distributions were chosen to attain a trade-off between time and frequency resolution and make 
sure that time-frequency components of the signal were represented by the distributions clearly 
with minimum rate of cross-terms. CWD provides better resolution because of its exponential 
kernel. Finally, three special categories of our dataset were evaluated using these transformations 
including normal, pre-ictal and ictal activities.  

Despite the assumed random nature of normal surface EEG signals, the presence of some 
episodic patterns, as found for set A, suggested that mental activity might represent the imposing of 
rhythmic harmonics resulting in the physiological alpha rhythm. However, as reported in [15], 
noticeable differences between the conditions of eye- close and eye- open could not be obtained by 
TFDs. 

As shown in Figure 3 pre-ictal activity has clear indications of rhythmic activity similar to seizure 
activity. In addition, a number of studies in which a successful connection between the anticipation 
of seizures by analysis of EEGs recorded from patients and epileptogenic zone during seizure free 
intervals has been demonstrated [15, 19] and it is supported by the results of the presented analysis.  
Epileptic activity evolves with changes in frequency of harmonics. As illustrated in Figure 4, 
distributions consist of lines that appear to be parallel in the frequency direction. Looking at the 
TFDs of the categories, it is interesting to note that the presence of a pattern in the TFD could 
help to indicate certain markers specifically in terms of seizure detection. Also, TFDs from 
epileptogenic zones might be useful. Renyi’s entropy provided a powerful numerical measure of the 
randomness of a signal in each category. As shown in Table 1, Renyi’s entropy is a high-quality 
discriminative feature especially in alpha and delta sub-bands of the signal. 

In our opinion, the classification of epileptic signals is one of the most important applicable 
fields of computer science in the medicine scope. In this field, so many algorithms have tried to 
detect, classify, or identify epileptic patterns in EEG signals. One of the most important algorithms 
is joint time-frequency analysis. In this study, discrimination of epileptic activity has been discussed 
by means of TFSAP that considers the properties of the signal in both the time and the frequency 
domains. Two well-known distributions from Cohen’s class were selected for visualizing the energy 
content of brain electrical activity. By utilizing multiresolution analysis results show that Renyi’s 
entropy with respect to CWD is a high-quality discriminative feature especially in specific sub-
bands of the signal. The novelty in our work is that we use Renyi’s entropy calculated from Choi-
Wiliams Distribution and show that this measure significantly differs statistically between three data 
sets (A, D and E). 
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