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Abstract 

A genetic algorithm for structure-activity relationships optimization was developed and 
implemented. The genetic algorithm was designed to be feed with families of molecular descriptors, 
and was tested on Molecular Descriptors Family. The objective of the genetic algorithm was to 
optimize the multiple linear regressions with four descriptors for prediction of octanol-water 
partition coefficient (expressed in logarithmic scale) of a series of 206 polychlorinated biphenyls. 
Relevant factors for evolution were parameterized in the implementation of the evolutionary 
program. The configuration file allows running of the genetic algorithm under different settings of 
parameters. The defined parameters were parameters used to characterize the adaptation to the 
environment (three parameters), to characterize the breading sample (four), the reproduction (four), 
the evolution objective (two), the selection (ten), the survival (four), and the program execution 
(three). 

Keywords: Simulating evolution; Genetic algorithms (GAs); Structure-Activity Relationships 
(SARs); Multiple Linear Regressions (MLRs).  

Introduction 

Structure-Activity Relationships Optimization 

Mathematical approach of SAR (structure-activity relationships) on BAC (biologically active 
compounds), started in nineteen century and are capitalized through the born of the quantitative 
structure-activity relationships (QSAR) concept [1], a mathematical tool able to describe the 
quantitative link between chemical structure and biological activity. SAR records were 
communicated in scientific literature since 1868, when (first) Crum-Brown & Fraser want to seen if 
the activity of compounds is or not a function of chemical structure and composition [2]. Only 
after almost forty years the QSAR paradigm was found useful in agro-chemistry, pharmaceutical 
chemistry, toxicology, etc [3]. Scientific literature contains many reports on usage of QSARs in the 
methodology of designing new BACs (the monograph [4] covers a good part of them). 
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Evolution Supervised by Genetic Algorithms 

Hard [5] and soft [6] inheritance, selection and survival [7], traits [8] and genes [9] crossover, a 
long and contentious debate over the 19th century [10] are all pieces from a puzzle build today the 
modern genetics [11] and were the sources of inspiration for genetic algorithms (GAs). 

First studies on simulating an evolution were published by Nils Aall BARRICELLI [12]. Alex 
FRASER (1923-2002) also published a series of studies about simulation of artificial selection of 
organisms having multiple loci controlling a measurable trait. Fraser's simulations [13-25] included 
all essential elements of modern GAs. 

Recording Evolution Supervised by a Genetic Algorithm 

The research question "How the evolution can be observed and characterized via different 
parameters characterizing the sample supervised to evolutes?" are not enough explored in the 
specialty literature on genetic algorithms subject. Studies of different operators essential for 
evolution are focused mainly on algorithm efficiency and a representative manuscript for this 
approach is the collection from [26]. 

A small number of studies described the influence of the evolution strategy on evolution 
objective and almost nothing about the influence of different parameters characterizing the 
evolving sample on evolution objective. 

The GAs passed out the border of the informatics field a long time ago, because of their results 
capitalization potential. PhD theses that had as objectives project, implement and use of genetic 
algorithms are found practically in all fields of research. Thus, in agriculture GAs were found useful 
to crop planning [27], in constructions to assess the risk of soil damage [28], in bioengineering to 
efficient control of pollution at a hydrographic basin level [29], in chemistry at design of sensor-
based controlled processes [30], in economics at optimization of problems with multiple options 
[31], in management at multi-scale processes modeling [32], in mechanics at optimization of 
composite structures [33], in environment at strategy chousing for water quality control [34], in 
biology in phylogenetic analysis [35] and evolution studies [36]. 

Research Aim of the Paper 

The research aim to project a GA and to implement it as an evolutionary program, capable to 
record the influence of different samples, environments and intrinsic parameters of genetic 
algorithm on evolution supervised by the genetic algorithm feed with data for structure-activity 
relationships optimization in a series of biologically active compounds. 

Material and Method 

Material 

The chosen set of molecules for the study is  
The PCBs data set (with 209 compounds in the series) was the set of compounds choused for 

this study. The log(Kow) was the available data measured in same experimental conditions for 206 
compounds [37-39]. 

HyperChem (licence v. 8.0/2007) was used for drawing and optimizing the compounds (using 
AMBER molecular mechanics model, POLAK-RIBIERE optimization algorithm, and AM1 
method for semiempirical energy calculations). Molecular Descriptors Family [40-42] was used to 
create the population of structural descriptors that feed the genetic algorithm. The search was 
started for multiple linear regressions with four descriptors members of MDF relating the observed 
log(Kow) of 206 PCBs. Grubbs test [43] was used to identify outliers (PCB209) in the experimental; 
data. 
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Method: Search Space and Genetic Algorithm 

Every gene codifies an operator used in construction of the chromosome of a molecular 
descriptor. Every descriptor (of a family of descriptors, such as MDF) is a genotype and all together 
is the genetic material of the family. Table 1 presents the search space created for MDF. 

Table 1. MDF search space 

Family Gene Genome 
DM t g                            
AP C H M E G Q                        
ID D d O o P p Q q J j K k L l V E W w F f S s T t      
IM r R m M d D                        
FC m M D P                          
SM m M n N S A a B b P G g F f s H h I i           

MDF 
 
 
 
 
 

LO I i A a L l                        
 
The working methodology of genetic algorithms suppose a initial prelevation (at random or using a 

strategy) of a sample of chromosomes from the genetic material - in this case a array of MDF members - 
from X1 to Xp which enters in cultivar for conducting the evolution process. The genetic algorithm 
operates on the sample which is changed (in part) in every generation. Every set of `n` descriptors (where 
n is the multiplicity order for MLR) is a point in the search space and a possible solution. The operators 
which change the genetic code are crossover and mutated. Crossover of two genotypes suppose chousing 
of a part from the stream of genes to be crossover (at random or using a strategy) and the values of the 
parts are switched one in the place of the other, and two descendents are produced. Mutation of a 
genotype supposes the changing of the value of a (or more) gene with other allowed value from the list of 
possible values for a given gene. Both crossover and mutation produces descendents. The selection of 
the genotypes is the operation which mutation and crossover calls for, are based on a strategy and uses a 
score function (selection score). At least a part of the descendents are viable (descriptors), being able to 
be part of a viable solution (MLR) in the next generation(s). Viable descriptors replace a part from the 
sample through a survival process. As selection process, survival process uses a score function (survival 
score) and uses a strategy. The evolution objective are recorded during evolution using a score function 
(objective score). The individuals which gives the best objective score in every generation (enters in the 
best MLR) are marked. The marked individuals are automatically qualified for the next generation (no 
survival strategy applies on it). Not all individuals of a generation (including parents and descendants) 
survive and will be part of the next generation. This is done in order to keep constant the sample size (thus 
the number of replaced individuals is equal to the number of viable descendants). 

Selection and survival based on selection and survival scores are applied through selection and survival 
strategies, using an algorithm. PS algorithm constructs a proportional strategy using an array of scores 
and gives to an individual a chance (to be selected in selection process or to be killed in survival process) 
proportional with the score; it returns a given number N_Sel of individuals using their chances. DS 
algorithm constructs a deterministic strategy returning the N_Sel individuals with the first N_Sel highest 
scores (applies a random qualification at equal scores if it is necessary). TS algorithm constructs a 
tournament strategy using the array of scores and qualifies N_Sel individuals through a repeated N_Sel 
times tournament of two individuals. 

The genetic algorithm acts as follows: 
 The sample of the given size (N_Gen) is created (it contains predefined or random individuals); 
 Repeat steps 1..6 until objective score is satisfactory or a number of generations are exhausted; 
 Step_1: Computes selection, survival and objective scores (and eventually include in the next 

generation the marked individuals); 
 Step_2: Select N_Cro pairs of individuals (using selection strategy); 
 Step_3: For every one from 2×N_Cro, using p_Par (low) probability and a discrete uniform 

distribution pick up a number of N_Mut genes and make a mutation on it (parents); save the result 
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(whatever mutated or not, 2×N_Cro individuals); 
 Step 4: For every one from N_Cro, using a discrete uniform distribution pick up the sequence of 

genes to be crossover, perform the crossover and save the results (replace the previous one, 2×N_Cro 
individuals); 

 Step_5: For every one from 2×N_Cro, using p_Chi (low) probability and a discrete uniform 
distribution pick up a number of N_Mut genes and make a mutation on it (child); save the results 
(whatever mutated or not; replace the previous one, 2×N_Cro individuals); 

 Step_6: Replace (using the survival strategy) a part of N_Gen with a part of 2×N_Cro; 

Results and Discussion 

A series of parameters influence the evolution and should be taken into account when a genetic 
algorithm is implemented. Table 2 presents a list of parameters that proved to be relevant. 

Table 2. Configuration of the evolution: classes and parameters 

Class Parameter Type (and values for lists) 
a_v_ADAPT_Variance Real 
ajb_ADAPT_JarqueBera Real 

Adaptation 

a_c_ADAPT_Correlation Real 
sn0_SAMPLE_Size Integer (natural) 
rn0_REGRESSION_Multiple Integer (natural) 
e1n_GENERATIONS_max Integer (natural) 

Sample 

g_r_GENERATIONS_first_rich List: {Yes, No} 
cn0_CROSSOVER_Pairs Integer (natural) 
m_m_MUTATION_Genes Integer (natural) 
mpp_MUTATION_Parent_probability Real 

Reproduction 

mcp_MUTATION_Child_probability Real 
b_p_EVOLUTION_parameter List: {r2, se, Mt, Hr} Evolution 
b_o_EVOLUTION_objective List: {min, max} 
sfs_SELECTION_strategy List: {proportional, deterministic, tournament} 
sfn_SELECTION_normalized List: {Yes, No} 
sfr_SELECTION_ranks List: {Yes, No} 
sfa_SELECTION_accuracy Integer (natural) 
sff_SELECTION_function List: {nalive, r2_min, se_min, Mt_min, Hr_min, 

r2_max, se_max, Mt_max, Hr_max, r2_avg, 
se_avg, Mt_avg, Hr_avg} 

sfo_SELECTION_objective {min, max} 
fr2_SELECTION_r2_p Real 
fse_SELECTION_se_p Real 
fMt_SELCTION_Mt_p Real 

Selection 

fHr_SELECTION_Hr_p Real 
v_p_SURVIVAL_phenotyping_p Real 
v_g_SURVIVAL__genotyping_p Real 
vfs_SURVIVAL_strategy List: {proportional, deterministic, tournament} 

Survival 

vfr_SURVIVAL_ranks List: {Yes, No} 
e0n_RUNS_number Integer (natural) 
b_k_RUNS_kepp_best_in_sample List: {Yes, No} 

Execution 

b_f_RUNS_get_best_from_file List: {Yes, No} + list of genotypes in a file named 
c_galg.txt 

 
 Adaptation parameters - in a series of three - refers the environment of the evolution in terms of 

viability of the phenotypes in the environment; these parameters defines limits - Variance and 
Correlation defines minimal values, JarqueBera defines maximal value - required to 
phenotypes to be considered alive in the environment. 
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 Sample parameters - in a series of four refer the sample and their cultivar - Sample Size is the 
'room' in the environment reserved for breeding; Regression Multiple is the number of 
phenotypes which participates as independent variables in the MLR; Generations Max is the 
maximum number of generations in which the GA is run in the process of MLR optimization; 
Generations First Rich is a choice to repeat the random selection of the initial generation 
genotypes until all genotypes has at least one alive phenotype in the environment. 

 Reproduction parameters - in a series of four - defines the way in which reproduction are made in a 
generation; Crossover Pairs is the number of pairs of genotypes which are crossover; Mutation 
Genes is the number of genes which are mutated when mutation occurs; Mutation Parent 
Probability controls when mutation occurs before crossover (at parents) and Mutation Child 
Probability controls when mutation occurs after crossover (at child). 

 Evolution parameters - two parameters - define the objective function (Evolution Parameter) and 
its objective (Evolution Objective). 

 Selection parameters - in a series of 10 - defines the strategy of selection (Selection Strategy), if the 
values are normalized between generations (Selection Normalized), if are used their ranks in 
place of their values (Selection Ranks), an integer defining a factor with which the selection 
scores is multiplied and rounded to integers (to create a discrete space of probabilities from 
scores required especially for Proportional Selection), a series of alternatives for selection 
function (Selection Function), the objective of a given alternative (Selection Objective), a 
power at which the result of the function to be rising up - rescales the values in terms of 
probabilities of selection (here four values should be specified, but just one gives the 
expression used at selection function - this one correspond to the defined alternative). 

 Survival parameters - in a series of four - defines the strategy for replacing the genotypes (Survival 
Strategy), if are used ranks in places of values of the survival function (Survival Ranks) and two 
parameters defining the weight of the genotype similarity (Survival Genotyping) and 
phenotype similarity (Survival Phenotyping) in the expression of the global similarity score of 
two individuals. 

 Execution parameters - in a series of thee - define the behavior in execution of the evolutionary 
program; Runs Number is the number of independent runs of the genetic algorithm restarting 
the search from a initial generation; Runs Keep Best In Sample defines if genotypes giving 
best MLR model in a generation enters in the survival process or are directly qualified for the 
next generation; Runs Get Best From File are a option useful for repeated optimization 
procedures in order to improve a previous obtained MLR. 

Table 3 shows the parameters which were used in the optimization of a MLR with four MDF 
descriptors acting as QSAR on log Kow of a series of 206 PCBs. 

Only a part of the genotypes from the entire population were adapted to the environment the rules for 
viability defined by the values from Table 3 were applied.  Thus, almost 46% (60337/131328) of the 
genotypes provided at least one adapted phenotype. About 20% (26355&26324/131328) of the 
phenotypes created by Identity and Absolute linearization operators (first and respectively third entries in 
Genome at LO gene in Table 1), almost 18% (24085) of logarithm (`l` entry in same table), and almost  23% 
of Logarithm of absolute (`L` entry, 29973 adapted phenotypes), inverse (`i`, 30178) and absolute inversed (`a`, 
30174) were adapted. 

The average value of the determination coefficients obtained in 46 runs (Table 3) for nine pairs of 
selection and survival strategies (Table 5) was of 0.8808 (414 observations) with a range between 0.8804 
and 0.8811 at a 5% risk of being in error. 

The evolution was observed in first generation in 28.5% (118/414) of the cases when the determination 
was improved to 0.8816 ranging between 0.8810 and 0.8823 at a 5% risk of being in error. The 
determination coefficient obtained after evolution in first generation was statistically significant different 
from the determination coefficient obtained in the first generation (the risk of being in error was about 3%) 
without costs in variability (F ratio comparing variances is 1.1, probability to observe at random such event 
is 52%). 

A list of parameters used to set up the output was defined (Table 4) in order to have detailed 
observation of the evolution. 



Lorentz JÄNTSCHI, Sorana D. BOLBOACĂ, Radu E. SESTRAŞ 
 

94 Appl Med Inform 26(2) June / 2010
 

Table 3. Configuration of the evolution 

Parameter Value 
a_v_ADAPT_Variance 0.1 
ajb_ADAPT_JarqueBera 1.0 
a_c_ADAPT_Correlation 0.1 
sn0_SAMPLE_Size 12 
rn0_REGRESSION_Multiple 4 
e1n_GENERATIONS_max 20000 
g_r_GENERATIONS_first_rich Yes 
cn0_CROSSOVER_Pairs 2 
m_m_MUTATION_Genes 2 
mpp_MUTATION_Parent_probability 5% 
mcp_MUTATION_Child_probability 5% 
b_p_SELECTION_parameter r2 
b_o_SELECTION_objective max 
sfn_FITNESS_normalized No 
sfr_FITNESS_ranks No 
sfa_FITNESS_accuracy 10000 
sff_FITTEST_function r2_min
sfo_FITTEST_objective max 
fr2_FITTEST_r2_p 1.0 
fse_FITTEST_se_p 1.0 
fMt_FITTEST_Mt_p 1.0 
fHr_FITTEST_Hr_p 1.0 
v_p_SURVIVAL_phenotyping_p 1.0 
v_g_SURVIVAL__genotyping_p 1.0 
vfr_SURVIVAL_ranks No 
e0n_RUNS_number 46 
b_k_RUNS_kepp_best_in_sample Yes 
b_f_RUNS_get_best_from_file No 

Table 4. Configuring the output 

Parameter Value 
d_d_SHOW_descriptive_XX 
(XX = m0, m1, m2, m3, m4, mx, my, v0, g1, g2, jb, r1, r2) 

Yes/No 

d_f_SHOW_fitness_YY 
(YY = nalive, r2_min, se_min, Mt_min, Hr_min, r2_max, se_max, Mt_max, 
Hr_max, r2_avg, se_avg, Mt_avg, Hr_avg) 

Yes/No 

d_s_SHOW_genotypes No/Yes 
d_p_SHOW_phenotypes No/Yes 
d_m_SHOW_mols No/Yes 
d_g_SHOW_generations No/Yes 
d_e_SHOW_evolutions Yes/No 
d_c_SHOW_configuration Yes/No 

Table 5. Selection and survival strategies in genetic algorithms: run results 

Selection Survival Configuration Evolution 
Proportional Proportional PCB_4044_cfg.txt PCB_4044_evo.txt 
Proportional Deterministic PCB_2441_cfg.txt PCB_2441_evo.txt 
Proportional Tournament PCB_9878_cfg.txt PCB_9878_cfg.txt 
Deterministic Proportional PCB_5108_cfg.txt PCB_5108_evo.txt 
Deterministic Deterministic PCB_6369_cfg.txt PCB_6369_evo.txt 
Deterministic Tournament PCB_6690_cfg.txt PCB_6690_evo.txt 
Tournament Proportional PCB_5828_cfg.txt PCB_5828_evo.txt 
Tournament Deterministic PCB_4872_cfg.txt PCB_4872_evo.txt 
Tournament Tournament PCB_1758_cfg.txt PCB_1758_evo.txt 
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The parameters from Table 4 allow the user to configure its output including or excluding some of 
them. The meanings of the parameters are as follows: 

 The generic parameters d_d_SHOW_descriptive_XX and d_f_SHOW_fitness_YY are lists (XX = 
m0, m1, m2, m3, m4, mx, my, v0, g1, g2, jb, r1, r2; YY = nalive, r2_min, se_min, Mt_min, 
Hr_min, r2_max, se_max, Mt_max, Hr_max, r2_avg, se_avg, Mt_avg, Hr_avg), every item in the 
list defining an observable (and Supplementary Material (online)); 

 d_s_SHOW_genotypes add a number of columns equal with sample size and containing the 
genotypes which gives at least an adapted phenotype; 

 d_p_SHOW_phenotypes add six times of sample size columns in the output file containing the 
adapted phenotypes; 

 d_m_SHOW_mols add extra columns in `_cfg.txt`, `_evo.txt`, and `_gen.txt` output files 
containing the predictions based on the best available MLR; 

 d_g_SHOW_genarations set to Yes produces the `_gen.txt` file containing one row per generation; 
 d_e_SHOW_evolution set to Yes produces the `_cfg.txt` file containing only the results when an 

evolution occurs; 
 d_c_SHOW_configuration set to Yes produces the `_cfg.txt` file containing only the results after 

entire cycles of evolution; 
The created evolutionary program was used to show the influence of different selection and survival 

strategies on evolution supervised by the genetic algorithm when was feed with data for structure-activity 
relationships optimization in the PCB series of biologically active compounds were recorded. 

Two parameters (sfs_FITNESS_strategy and vfs_SURVIVAL_strategy - see Table 2) took different values 
once at the time for the parameters kept constant (the above table), nine executions of the program were 
independently started, and the results were recorded in separate files (two files per execution, Table 4). 

The following information was available in the PCB_XXX_evo.txt files: 
 e1i: generation (integer) in which a new evolution occurred (evolution refers the value of the 

objective function r2 → max.; evolution meant the obtaining of a QSAR with a determination 
coefficient higher than the one previously obtained); 

 sn2: number of viable genotypes (not always all genotypes from crossovers and mutations are 
viable - has at least one adapted phenotype; maximum number of viable genotypes is the sample 
size sn0 - see Table 2);  

 pn2: number of adapted phenotypes; maximum number of adapted phenotypes is six times of 
sn2); 

 nrali: number of phenotypes associations (regressions) obtained with individuals from cultivar of 
the sample; phenotypes associations are obtained combining rn0 - see Table 2 - distinct 
phenotypes and the same adaptation requirements are for the association as are the requirements 
for a phenotype; 

 Gen11..Gen0: the genotype in position from 12 down to 1 in the places of the sample in a given 
moment of evolution; 

 rr2: value of the objective function of evolution (see Table 3); the determination coefficient of the 
best available SAR expressed as MLR with 4 MDF descriptors existing in the sample; 

 rse: the value of the (alternative) objective function "estimation errors sum"; 
 rMt: the value of the (alternative) objective function "mean of Student t values of the regression 

parameters"; 
 rHr: the value of the (alternative) objective function "the entropy of the determination";  
 rdr: number of coefficients in the MLR giving the best available MLR; rdr=rn0+1 if the free term 

are present (is not null at 5% risk being in error) and rdr=rn0 otherwise; 
 rme: mean squared error (MSE) of the regression that provided the best available MLR; 
 rdt: number of degrees of freedom in the best available MLR (nmo - rdr); 
 rm0: the absolute value of the mean of estimate, M(|Ŷ|); 
 rm1: mean of the estimate, M(Ŷ); 
 rm2: the mean M((Y-Ŷ)2); 
 rm3: the mean M((Y-Ŷ)3); 
 rm4: the mean M((Y-Ŷ)4); 
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 rmx: the mean M(Ŷ2); 
 rmy: the mean M(YŶ); 
 rv0: rm2/rm02; 
 rg1: skewness (g1) of the estimated (Ŷ); 
 rg2: kurtosis excess (g2) of the estimated (Ŷ); 
 rjb: the Jarque-Bera (JB) statistic of the estimated (Ŷ); 
 rr1: r(Y,Ŷ); 
 rr2: r2(Y,Ŷ); 
 rnalive: 0 (when Ŷ are not adapted) or 1 (when Ŷ are adapted); 
 rr2_min: value "r2_min" of the selection score FS; are given by Ŷ to the phenotypes from which 

are composed (min, max and avg are identical here, referring the min, average and max from a 
single value); rse_min: value of the alternative "se_min" of the selection score FS; rMt_min: value 
of the alternative "Mt_min" of the selection score FS; rHr_min: value of the alternative "Hr_min" 
of the selection score FS; 

 rr2_max: idem rr2_min; rse_max: idem rse_min; rMt_max: idem rMt_min; rHr_max: idem 
rHr_min; rr2_avg: idem rr2_min; rse_avg: idem rse_min; rMt_avg: idem rMt_min; rHr_avg: idem 
rHr_min; 

 gnalive: in the generations which produces evolution (and only these are listed in this file and in 
the defined configuration of the execution) are identical with nrali; nrali keeps the number of 
obtained regressions with individuals from last (including the current) generation producing 
evolution and gnalive refers the current generation (without regarding to evolution); 

 gr2_min: value "r2_min" of selection score FS given by the descriptors existing in sample in the 
generation; gse_min: value of "se_min" alternative; gMt_min: value of "Mt_min" alternative; 

 gHr_min: value of "Hr_min" alternative; gr2_max: value of "r2_max" alternative; gse_max: value 
of "se_max" alternative; gMt_max: value of "Mt_max" alternative; gHr_max: value of "Hr_max" 
alternative; gr2_avg: value of "r2_avg" alternative; gse_avg: value of "se_avg" alternative; gMt_avg: 
value of "Mt_avg" alternative; gHr_avg: value of "Hr_avg" alternative; 

 regression_equation: best MLR obtained with descriptors with the genotype in the sample; 
The following information was available in the PCB_XXX_cfg.txt files: 
 Configuration part: 

o My_Data=172.27.211.5/MDFSARs[PCB_lkow_data;PCB_lkow_tmpx] - IP of the 
server, database, tables with input data; 

o Genomes=Genes:[mp;fc;oi;id;ap;dm]/Addre:[fc;ap;id;oi;dm;mp] - definition of the 
genome and the calculation of the address in the table (a permutation of the definition, 
used to access fast the data in the `_tmpx` table); 

o G_Codes=mMnNSPsAaBbGgFfHhIi/mMDP/RrMmDd/DdOoPpQqJjKkLlVEWw
FfSsTt/CHMEGQ/gt - list of the codes for every gene of the genome; 

o N_Sizes=Sample:12/CrossO:2/RegreM:4/MutGen:2 - sample size; number of 
crossovers; number of descriptors in MLR; number of genes to be mutated when 
mutation occurs; 

o Adapted=AbsVariance: 1.6353599751539131E-0003(0.100)/Jarque-Bera: 
7.5766145463847375E+0000(1.000)/Determinate:0.100(%)/StudentTVal:[ 
1.9721423227715891E+0000(201); 1.9720824746250930E+0000(202)] - v0 
(correspondent of rv0 din PCB_XXXX_evo.txt for the observed (Y); jb (correspondent 
of rjb din PCB_XXXX_evo.txt for the observed (Y); lowest determination coefficient to 
be adapted; Student t from Student distribution corresponding to a model of regression 
with  free term (df=nmol-RegM-1) and without free term (df=nmol-RegM) used as 
limits in the two cases to accept or reject the model; 

o Mutated=ParentsProb:0.050/ChildreProb:0.050 - probability (in percents) to occur 
mutation before crossover (parents are then mutated); probability (in percents) to occur 
mutation after crossover (children are then mutated); 

o Objectiv=Parameter:r2/To:max - the name of the objective function chosed to be used 
in the evolution process; the objective of the objective function; 
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o Selected=Parameter:r2_min/To:max/Using:tournament/Normalized?:No/SortedRank?
:No/First_Rich?:Yes - which is the observable in selection; which is the selection 
objective; which is the strategy of selection; if the strategy is applied on normalized 
(between generations) values; if ranks replaces the values when the strategy are applied; 
first generation is rich in adapted genotypes (all adapted) or not; 

o Survival=Phenotyping:1.000/Genotyping:1.000/Using:tournament/SortedRank?:No - 
the value of the weight of the phenotypic similarity in the survival score; the value of the 
weight of the genotypic similarity in the survival score; the strategy of the survival; if 
ranks replaces the values when the strategy are applied; 

o Evolution=nalive;r2_min;se_min;Mt_min;Hr_min;r2_max;se_max;Mt_max;Hr_max;r2
_avg;se_avg;Mt_avg;Hr_avg; - parameters recorded during evolution; 

o Alive=Genotypes:60337/Phenotypes(I):26355;/Phenotypes(A):26324;/Phenotypes(l):24
085;/Phenotypes(L):29973;/Phenotypes(i):30178;/Phenotypes(a):30174; - total number 
of adapted in the entire population: genotypes, and phenotypes by linearization operator 
(see Table 1); 

o Repeated=Sampling:45 - number of repetitions is one unit more (here are the lower limit 
for construction of a statistical significance); 

 Repetition: number of repetition in the independent run of the GA starting from a random initial 
sample; 

 Found: number of the generation in current repetition when a evolution occurred; 
 All other parameters corresponds to the same ones from PCB_XXXX_evo.txt file: r2=rr2, 

se=rse, Mt=rMt, Hr=rHr, dr=rdr, me=rme, dt=rdt, m0=rm0, m1=rm1, m2=rm2, m3=rm3, 
m4=rm4, mx=rmx, my=rmy, v0=rv0, g1=rg1, g2=rg2, jb=rjb, r1=rr1, r2=rr2, nalive=rnalive, 
r2_min=rr2_min, se_min=rse_min, Mt_min=rMt_min, Hr_min=rHr_min, r2_max=rr2_max, 
se_max=rse_max, Mt_max=rMt_max, Hr_max=rHr_max, r2_avg=rr2_avg, se_avg=rse_avg, 
Mt_avg=rMt_avg, Hr_avg=rHr_avg, regression_equation= regression_equation). 

Conclusions 

A genetic algorithm for identification the most close to the optimum multiple linear regression 
models was developed and implemented to be use in identification of quantitative structure-activity 
relationship models. The genetic algorithm was designed to be feed with families of molecular 
descriptors, and was tested on the Molecular Descriptors Family.  

The objective of the genetic algorithm was to optimize the multiple linear regressions with four 
descriptors for prediction of octanol-water partition coefficient (expressed in logarithmic scale) of a 
series of 206 polychlorinated biphenyls and was successfully accomplished. 

The average of the determination coefficients obtained in 46 runs for nine pairs of selection and 
survival strategies was of 0.8808 (414 observations) with a range between 0.8804 and 0.8811 (at a 
risk to be in error of 5%). 

The evolution was observed in first generation in 28.5% (118/414) of the cases when the 
determination was improved to 0.8816 (with a range from 0.8810 to 0.8823, at a 5% risk to be in 
error). The determination coefficient obtained after evolution in first generation proved to be 
statistically significant different from the determination coefficient obtained in the initial generation 
(for a level of significance of 3%) without costs in variability (F ratio comparing variances was 1.1, 
probability to observe at random such event being 52%). 
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