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Abstract 
Aim: To prove expediency of the steepest descent method to divide a given cloud of (Y, X1, X2) 
points into the spatial clusters with purpose to estimate a simple regression model Y = f(Z|X1,X2) 
at each cluster. Material and Method: The exemplary data sets {Y, X1, X2} were drawn randomly 
from assumed 3D surface: Y = f(X1,X2), and then a random noise was added to variable Y. A 
polynomial model Y = f(X1,X2) and a set of models Y = f(Z|X1,X2) were estimated separately, 
both under Akaike information criterion (AIC), and then compared with respect to their 
determination coefficients R-square, and the residuals’ distributions. Results: In the artificial data set 
studied, the both compared methods after several iterations can provide regression models of the 
quite similar quality. Conclusions: Because the proposed novel method seems to be more robust to 
outliers, and easier to graphical presentations and to intuitive understanding than the conventional 
way of building a regression model, the proposed novel method can be recommended to use by 
non-statisticians, especially in situation when, besides usual moderate noise, the sporadic but 
influential measurement errors can occur. 
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Introduction 

The various models of 3D surfaces are in everyday use at almost all practical domains, usually in 
the form of ready to use maps, like disease maps for epidemiologists and the other public health 
professionals [1]. Therefore, numerous analytic tools suitable to create a map by an experienced 
statistician, basing on a set of an available data, have recently been developed [1,2].  

Alas, in situation when some non-statistician is looking for a rapid answer to some practical 
question, these tools have some worrying inadequacies, associated mainly with insufficient emphasis 
given by designers to practical troubleshooting, that is to data validation before analyses, 
recognizing routine pitfalls and critical traps during processing, and validation of results after 
processing. Even a very clear main idea of an estimation procedure, and a perfect methodological 
guide, both can be perceived as incomprehensible because of specific statistic terminology, and due 
to lack of framework to parallel comparative computations with exemplary data [3]. Then, the non-
statisticians ordinarily perceived all process of estimation as generally unmanageable, not only due 
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to troubles with statistical terminology, but also as a result of the frequent silent assumptions [3,4], 
and inadequate use of graphics [5,6].   

This paper provides an alternative strategy for the analysis of a set of Ω = {yi, x1.i, x2.i} data, i 
= 1, 2, …, N, when the primary focus of interest is not only on predicting the mean values 
mean(Y|(X1, X2)) for freely chosen point (X1, X2), as at [1] and [2], but also on predicting the 
extreme gradients max(∆Y|D1.2=1) and min(∆Y|D1.2=1); where: Y is a variable under interest; 
X1 and X2 can be interpreted as geographical coordinates, and D1.2 can be interpreted as 
Euclidean distance from point (X1, X2) at the X1X2 plane.  

Our approach can be summarized with three basic ideas: (i) divide compound surface into some 
simple parts, all with comprehensible features; (ii) apply interactive method with adequate visual 
output that enables researcher to select on-screen specific subsets of data and identify their 
characteristics, or to isolate outliers; (iii) allow researcher to rely only on his own experience and 
intuition, but give him opportunity to apply recognized formal criterions and statistical procedures 
at each step of analyses. 

The first phase of the proposed procedure was aimed to separate at a data set Ω the clusters of 
three kinds: first kind of the flat clusters ΩF, included triplets of neighbouring points with small 
gradients: (∆Y|D1.2=1) ≈ 0; second kind of the sloped clusters ΩS, included points of sensible 
positive gradients (∆Y|(∆D)), under restriction that every sloped cluster can be considered as a  
connected graph, what correspond to known steepest descent method, [7]; and the third kind of the 
abnormal clusters ΩA, included isolated points and points of anomalous gradients.  

At the start an all data set Ω is considered as subset of candidates. During process of defining 
clusters the candidates are step-by-step removed from this subset to active clusters ΩF or ΩS or 
ΩA. Candidates are enrolled into consideration with use of known k-NN procedure [8], as nearest 
neighbours to active clusters ΩF or ΩS. In case of need, candidates can be enrolled randomly.  

During clustering some neighbouring clusters can join one to other naturally, accordingly to 
logic of the procedure. In case of need, the procedures described at [1,2] can be applied to force a 
further aggregation of the flat clusters, and procedures like [9] to force joining of the sloped 
clusters.  

The second phase of the proposed procedure was aimed to characterize every sloped cluster 
with its own only bivariate regression model Y = Yj + bj*fj(Zj); where: j – index of a cluster, j = 1, 
2, …, J; Yj - estimated maximal value of Y at j-th cluster; Zj – a measure of the distance at a j-th 
cluster from point (X1,X2)|Yj; Yj, bj – coefficient of regressions; fj(Zj) – monotone, at least quasi-
monotone function. Finally, it should be make an attempt aimed to join separate regression models 
into a single common model for all ΩF and ΩS clusters. 

There are several known methods aimed to define a measure of the distances Zj. The simple 
way, at the frames of the rank-based methods, put Zj = 0 for a (X1,X2)|Yj; then, for any pair of 
two adjacent knots at an ordered graph, a ∆Zj = 1 [10]. The other simple way to define distance at 
an ordered graph is to sum up all distances Dk.k-1 along a path from considered k-th knot to knot 
of Zj = 0. We suggest other somewhat more complicated method, corresponding to ideas of 
principal components approach and to joint nonparametric transformation to linearity, [11]. The 
proposed method based on assumption that each sloped cluster under consideration can be 
reduced on a X1X2 plane to a single line of a general local descent; with adequate arrangement of 
the projections of this cluster points on this line. Subsequently, distances Z are measured as length 
of a path along this line.  Finally, the additive regression models can be easy transformed to simple 
linear regression models, due to monotonicity of the fj(Zj) function, [12].  

In the present preliminary study the all problems with linearization were omitted because the 
exemplary data sets of N = 100 points (Y, X1, X2) were drawn randomly from assumed a single flat 

cluster ΩF:  Y = 0, and from four sloped clusters of the linear shapes either Y  -|X1 – 20| or Y  
-|X2 – 20|, and then a random noise was added to values of variable Y. 

The illustrative data sets were explored twice, first time with classical procedures for selecting a 
structure of the polynomial regression, and then independently, with the proposed method. This 
way of preliminary confirmation follows to known Popper’s falsification principle, [13], that 
suggests a simple empirical way to reveal an unsuitability of a given model by generating the 
falsifiable predictions with it. 
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The method has the advantages of being conceptually simple and much easier to graphical 
presentations and to intuitive understanding than the conventional way of building a regression 
model. Therefore, it provides better opportunity for a researcher aimed to utilize his experience and 
professional knowledge at process of constructing a model, then other know procedures [14]. 

Material and Method 

In the present paper the illustrative artificial data set of N = 100 random data (Y, X1, X2) was 
investigated twice, first time with classical procedures for selecting a structure of the polynomial 
regression, and then independently, with the proposed method. 

With aim to obtain the illustrative data set the exemplary 3D surface was constructed as follows. 
The five squares of the size 40*40 were arranged on X1X2 plane in such a way, that four squares 
named A, B, C and D, stick closely to a central square named flat square. Then the N = 20 points 
(X1, X2) were drawn randomly from each of above squares separately, assuming uniform 
distribution, and ideal values of variable Y at the flat square all were put Y = 0; but at the other 
squares were computed as follows, at the A: Y = -0,5*(X1 – 20); at the B: Y = -(X2 – 20); at the C: 
Y = +(X2 – 20); and at the D: Y = +2*(X1 – 20). Finally, some random noise was added to above 
ideal data. The illustrative data set is presented in figure 1.  

The polynomial regression models were estimated with classical LSE (least-square-error) 
procedure and with MLL procedure, both available at SAS software, [15]. The analyses started with 
polynomial of the forth order (1), and step-by-step chose properly, [16], a single regression 
coefficient to put it equal to zero up to obtain minimum of Akaike’s informative criterion AIC.  

Y = a + ∑bi*(X1)i + ∑ci*(X2)i ; bi*ci  ≠ 0;  i = 1, 2, 3, 4;   (1) 

For LSE procedure AIC was defined with formula (2), and for MLL procedure with (3). 
AIC = N*ln(SS.res/N) + 2*df.regr.       (2) 
AIC = LL + 2*df.regr.         (3) 

where: SS.res – sum of squares of residuals; df.regr – degree of freedom of regression model.  

 

Figure 1. The axonometric view of the investigated data set 

The alternative method for the regression estimation was organized as follows. At the first phase 
the points of the illustrative random points (Y, X1, X2) set were connected into spatial 3D clusters 
of three kinds, flat clusters, sloped clusters, and anomalies, under general rule, that any cluster can 
attach only either some separated still point  or a point from other cluster of the same kind. At the 
next phase the spatial 3D clusters were transformed into 2D clusters at a XY space. Then, at each 
sloped cluster separately, the simple regression Y = f(X) was estimated, and at each flat cluster 
variable Y was estimated with its mean value at this cluster. At the last phase the common 
regression model for all flat and sloped clusters were constructed under criterion of minimum AIC 
(2).  

At the first phase the connecting was based on the steepest descent, [7], and k-NN, [8], 
approaches. The distance D from any point to any other one was calculated as Euclidean distance 
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at the X1X2 plane. At each a flat or a sloped cluster the active and inactive points were 
differentiated. In case of need, if anyone cluster with active points didn’t exist, then a data point to 
consideration should be freely chosen from the unconnected points. A chosen point should be 
included to anomalies either it was more distant from any other admissible point than assumed 
maximal permissible distance, or if all nearer admissible points had too great estimated gradients G 
= ∆Y/D. Otherwise, it initiated with its neighbouring point a flat or a sloped cluster. At the flat 
clusters the active points were connected into pairs of neighbouring active points, but at the sloped 
clusters weren’t connected. For any, freely chosen pair of neighbouring active points at a flat cluster 
as the candidate to attachment the nearest point from outside is considered. If Y at this point was 
placed inside assumed interval from actual mean value of Y at this flat cluster, say mean(Y)± 
deltaY, than this candidate point should be attached as a new active point, otherwise a chosen pair 
of active points should be classified as inactive pair. At the sloped clusters for any freely chosen 
active point a set of candidates included no more than assumed number of K nearest admissible 
points from outside, no more distant than assumed maximal permissible distance. For each of 
candidate a value of a gradient is estimated as G = ∆Y/D, and from consideration were excluded 
candidates with either too great G: |G| > Gmax; or too little G: |G| < Gmin. From the 
remaining candidates, if any, the candidates with extreme gradients were attached to a cluster as the 
new active points. In any case, a previously active point turn into inactive one. During this phase a 
researcher can freely change all parameters: number of nearer neighbours, limits deltaY, Gmax and 
Gmin.  

At the next phase the mean direction tg() of descent on Y at the X1X2 plane was estimated for 
each sloped cluster separately, under criterion of maximal sum of projection of gradients. With this 

aim for each pair of the connected points at a considered cluster the direction tg() = ∆X2/∆X1 

was calculated, and projection Gp of its gradient G = ∆Y/D was estimated as Gp = G*cos( - ). 

The Akaike’s AIC (2) can be used to estimate common direction tg() for several clusters. A new 

axis Z for each estimated direction tg() was located through origin (X1 = 0; X2 = 0), and  each 
point of a sloped cluster was projected on its axis Z. The points of a flat cluster can be projected on 
a freely chosen axis Z. The points classified as anomalies were excluded from further analyses. 
Finally, the initial data sample (Y, X1, X2) took form (Y, Z).  

At the next phase a regression model Y = f(Z) was estimated as usual for each sloped cluster 
separately. The Akaike’s AIC (2) can be used to estimate common regression model Y = f(Z) for 
several clusters. With this aim, in case of linear models of the form: Y = a + b*Z, it first it should 
be proved if it is admissible to put equal intercepts and equal slopes at some clusters; then, to put 
equal slopes; and finely, to put intercepts equal to zero for several clusters, with respect to proper 
new origin of Z and Y axis. 

Results 

Results of classical LSE and MLL polynomial regression, see Table.1 

Table 1. Results of classical LSE and MLL polynomial regression 

df.reg AIC|LSE AIC|MLL P(next=true) Estimated model 

8 94.52 380.31 0.71 
Y = a + b11X1+b12X1

2+b13X1
3+b14X1

4 + 
b21X2+b22X2

2+b23X2
3+b24X2

4 

7 92.71 378.50 0.71 
Y = a +    0    +b12X1

2+b13X1
3+b14X1

4 + 
b21X2+b22X2

2+b23X2
3+b24X2

4 

6 90.96 376.74 0.73 
Y = a +    0    +b12X1

2+b13X1
3+b14X1

4 +    0   
+b22X2

2+b23X2
3+b24X2

4 

5 88.98 374.77 0.10 
Y = a +    0    +b12X1

2+b13X1
3+b14X1

4 +    0   
+b22X2

2+    0    +b24X2
4 

4 93.36 379.15 # 
Y = a +    0    +b12X1

2+b13X1
3+    0     +    0   

+b22X2
2+    0    +b24X2

4 
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For the initial model with 9 regression parameters we received R2 = 0.9760 and adjusted R2 = 
0.9739 

The most informative model has only 6 regression parameters R2 = 0.9759 < 0.9760 but 
adjusted R2 = 0.9746 > 0.9739.  

Table 2. Descriptive statistics for data (Y, Z) divided into five clusters 

Parameter Flat A B C D all 

N 17 20 21 22 20 100 

mean Y 0.02 -20.86 -9.89 -9.42 -5.15 -9.35 

SD 0.15 11.82 6.20 6.40 2.98 9.51 

R(Y,Z) -0.19 -0.98 -0.98 -0.97 -0.98 -0.73 

p(R(Y,Z)) 0.46 0.0000 0.0000 0.0000 0.0000 0.0000 

N = number of observations; SD = standard deviation; R(Y,Z) = correlation 
coefficient; p(R(Y,Z)) = significance of hypothesis: R(Y,Z) = 0. 

Table 3. Results of building common regression model under Akaike’s informative criterion AIC 

Df.reg Clusters AIC P(next=true) Model 

9 5 76.66 65% Y = Yflat + DVi*(ai + bi*Z); i = A, B, C, D  

7 4 75.39 60% Y = Yflat + DVi*(ai + bi*Z); i = A, BC, D 

6 4 74.55 0.0% Y = Yflat - Y0 + DVi*bi*(Z – Z0); i = A, BC, D 

5 3 111.4 # Y = Yflat - Y0 + DVi*bi*(Z – Z0); i = AD, BC 

where: Y0, Z0 – coordinates on new origin of Y and Z axis 

Discussion 

The illustrative data sets were investigated twice, first time with classical procedures for selecting 
a structure of the polynomial regression, and then independently, with the proposed method. This 
way of preliminary confirmation follows to known Popper’s falsification principle [13], that 
suggests a simple empirical way to reveal an unsuitability of a given model by generating the 
falsifiable predictions with it. 

The method has the advantages of being conceptually simple and much easier to graphical 
presentations and to intuitive understanding than the conventional way of building a regression 
model. Therefore, it provides better opportunity for a researcher aimed to utilize his experience and 
professional knowledge at process of constructing a model, then other know procedures [14].  

It should be noted that in case if the spatial clusters objectively exist, then conventional brushing 
technique provides good opportunity to detect them on the base of simple visual inspection of the 
plots of residuals (i.e. regression errors) versus considered variables, for good example with proper 
explanations one can see [17].  

It should be noted that all process of regression model estimation can be totally automated [18], 
even with respect to including into process some experts opinions [14], and procedures of defining 
spatial clusters with k-NN technique [19]. 

Conclusions 

Because the proposed novel method seems to be more robust to outliers, and easier to graphical 
presentations and to intuitive understanding than the conventional way of building a regression 
model, the proposed novel method can be recommended to use by non-statisticians, especially in 
situation when, besides usual moderate noise, the sporadic but influential measurement errors can 
occur. 
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