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Abstract 
Aim: Exploring the spatial patterns in joint distribution of incidences of two diseases. Material and 
method: A Poisson-Binomial regression model was used in analysing hospitalisation counts data in 
Hungary, 2008. Model parameters were estimated by MCMC implemented in WinBUGS. Results: 
Spatial patterns of laryngeal and hypopharyngeal cancer differ significantly from that of their ratio. 
Conclusion: The Poisson-Binomial model proposed here might help clarify us the different spatial 
dependencies of the sum and the ratio of incidences of two diseases. 

Keywords: Epidemiologic Studies; Regression Analysis; Poisson Distribution; Binomial 
Distribution. 

Introduction 

Lots of relevant statistical analyses are available for malignant neoplasm of hypopharynx and 
malignant neoplasm of larynx, but most of them are based on clinical data. Brugere et al. stated that 
locations of cancer of larynx, pharynx, and mouth differ significantly according to the consumption 
of alcohol and brown tobacco [1]. Statistical term ‘significant’ is used here in reference to their data 
as a sample (3500 inpatients of hospital of Institute Curie, Paris examined from 1975 to 1982), but 
there is no clear definition of the population from where this sample were taken. Further 
investigations are needed when adapting these results in an analysis of public health data. 

Several papers (e.g. Nakai [2]) demonstrated evidences that peptic ulcer is a multifactorial 
disease with both bacterial (Heliobacter pylori) and psychosomatic causes. Davidovic et al. pointed 
out that the age-risk dependencies of gastric and duodenal ulcer are different from each other [3].  

Hospitalisation counts classified by these two diagnoses are commonly assumed to be 
conditionally independent Poisson random variables in epidemiological modelling [4]. Speaking in 
regression framework: responses are independent conditioned on all the explanatory variables are 
controlled. The real situation is that only a small part of relevant explanatory variables are known in 
epidemiologic studies. Statisticians remove the effects of known factors (most commonly the age 
and gender) when calculating standardised incidence ratio (SIR), but there is no commonly-
acknowledged statistical method testing for association of SIR values of two diseases. The common 
association tests cannot be used correctly because of unknown distribution of SIR values. 

One possibility to overcome this problem is the shared component model for the joint spatial 
analysis of several diseases proposed by Knorr-Held and Best [5]. The Poisson-Binomial model we 
will use here decomposes the joint distribution of counts into marginal and conditional 
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distributions. Our motivating ideas are similar to that of the shared component model but our 
method is restricted to two variables only. 

Material and Method 

Hospitalisation Incidence Data 

The analyses are based on GYEMSZI data of hospital admissions (incl. clinical units) classified 
by admission diagnosis (using its ICD-10 codes), age category, gender and place of residence of 
patients. This database is a Hungarian national data repository that stores records of all hospital 
cases based on a defined standard minimal basic data set. The data collection started in 1993; the 
current database stores data consistently since 2004. Patient identifier is replaced by a pseudocode 
that does not identify the real person but enables to couple the records belonging to the same 
patient.   

Diseases treated here are the malignant neoplasm of hypopharynx (ICD-10 code: C13) and the 
malignant neoplasm of larynx (ICD-10 code: C32). The mean annual hospitalisation incidence rate 
in Hungary is about 25 inpatient cases per 100,000 citizens/year for C13 and 60 inpatient cases per 
100,000 citizens/year for C32. 

Results of an analysis of gastric ulcer (ICD-10 code: K25) and duodenal ulcer (ICD-10 code: 
K26) data are demonstrated in Appendix 3. The mean annual hospitalisation incidence rate in 
Hungary is about 180 inpatient cases per 100,000 citizens/year for K25 and 150 inpatient cases per 
100,000 citizens/year for K26.  

The Poisson-Binomial Regression Model 

The conditional Poisson-Binomial regression method is specified in Appendix 1. The well-
known technique of decomposing a joint distribution into its marginal and conditional distributions 
stems from Barndorff-Nielsen [6]. Many statistical textbooks (e.g. Agresti [7] Ch. 3.1.) treat 
decomposing a joint distribution into its marginal and conditional distributions the case we use 
here: if Y(1) and Y(2) are two independent  Poisson random variables and Z=Y(1) + Y(2) then Z is 
also Poisson and conditional distribution Y(1)|Z is Binomial of order Z Our idea was to apply this 
decomposition in the Poisson regression framework and to estimate parameters of Z and Y(1)|Z 
independently. An example of artificial data is shown in Appendix 2. to demonstrate how to 
describe different spatial patterns of Z and Y(1)|Z by fitting our model. Computer implementation 
of this model is easy using the built-in implementation of Knorr-Held and Best method in 
WinBUGS [8]. 

Results 

Analysis of C13 and C32 Incidence Data 

Raw incidence rates were transformed into the standardised ones. The table of hospitalisation 
incidence numbers classified by age and gender (Table 1.) divided by the population numbers cell 
by cell form the table of age-gender specific hospitalisation incidence rates (Table 2.).  

Table 1. Hospitalisation incidences of C13 and C32 patients by age and gender in Hungary, 2008  

C13 MALE FEMALE Total 

  

C32 MALE FEMALE Total 

0-34 5 3 8 
  

0-34 11 5 16 

35-64 1754 260 2014 
  

35-64 3379 643 4022 

65-xx 440 79 519 
  

65-xx 1653 270 1923 

Total 2199 342 2541 
  

Total 5043 918 5961 
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Standardised Incidence Ratio (SIR) has been calculated for each of the 174 sub-regions: the 
actual incidence number divided by the expected incidence number. The expectation has been 
calculated under the assumption of risk homogeneity (the risk of being hospitalised depends only 
on age and gender), so it is the sum for all age-gender categories the population number of this age-
gender category multiplied by the age-gender specific rate of Table 2. 

Table 2. Hospitalisation incidence rates (/100 000 persons) of C13 and C32 patients by age and 
gender in Hungary, 2008 

C13 MALE FEMALE 

   

C32 MALE FEMALE 

0-34 0.22 0.14 
   

0-34 0.49 0.23 

35-64 90.63 12.38 
   

35-64 174.60 30.62 

65-xx 74.23 7.66 
   

65-xx 278.86 26.18 

 
The following set of maps of SIR values of sub-regions can be conceived as a visual test for the 

assumption of risk homogeneity.  

 

Figure 1. SIR values of the 174 sub-regions of Hungary, (a) C13 SIR, above left (b) C32 SIR, 
above right (c) (C13+C32) SIR, down left (d) C32/ (C13+C32) SIR, down  right 

SIR values appearing on Figure 1 seem to have spatial autocorrelation and cross-correlation 
between the two diseases. Moran statistics might be used in testing for risk homogeneity, but it is 
obvious, that the hypothesis of homogeneity of SIR values must be rejected. Moreover, one can 
easily reveal that maps a, b and c are similar to each other, while map d is different. These 
impressions can be turned into regular statistical tests using Poisson-Binomial model as follows. 

Table 3 consists of parameter estimation of Poisson-Binomial model realised in WinBUGS. 
Notations of Appendix 1 can be summarised using the multilevel generalised linear model 
terminology. There are two outcome variables: Z and Y. The first one, Z consists of the sum of 
incidence numbers of (C13 + C32) by age-category, gender and sub-region and assumed to be 
conditionally independent realisations of a Poisson random variable with random parameter mu. 
The second one, Y consists of the incidence numbers of C32 by the same categories and assumed 
to be Binomial of order Z and with random parameter p. Explanatory variables X(µ) and X(P) are the 
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indicator variable of Dél-Dunántúl, South-West Region of Hungary (that is they are 1 for sub-
regions included in this South-West Region and they are 0 for all other parts of country). Linear 
predictor on the first level is the natural logarithm of parameter mu and modelled as the logarithm 
of age-gender standardised expected incidence number (an offset variable) plus an intercept 
parameter plus a regression parameter b multiplied by explanatory variable X(µ) plus an error term. 
Linear predictor on the second level is the logit of parameter p and modelled as the sum of an 
intercept parameter and a regression parameter beta multiplied by explanatory variable X(µ) plus 
another error term.   

Table 3. Parameter estimation in Poisson-Binomial model 

node mean sd MC error 2.5% median 97.5% start sample 

a -0.2447 0.0732 0.00513 -0.3875 -0.2453 -0.0944 751 2250 

b 0.8454 0.1480 0.01031 0.5581 0.8474 1.1330 751 2250 

alpha 0.2408 0.0610 0.00426 0.1158 0.2426 0.3559 751 2250 

beta 0.0786 0.1255 0.00874 -0.1611 0.0774 0.3232 751 2250 

deviance 1818.0 25.59 0.81890 1770.0 1817.0 1870.0 751 2250 

 
One can infer from Figure 1 that the SIR values of disease (C13+C32) seem to be higher in the 

South-West Region than elsewhere. This visual impression is confirmed by Table 3. because 
coefficient b proved to be positive and statistically significant (its 0.95-level confidence interval is 
[0.558, 1.133] and the 0 value is outside of this interval). On the other hand the hypothesis beta=0 
must be accepted (because its 0.95-level confidence interval [-0.1611, 0.3232] contains the 0 value) 
and this fact is interpreted that ratios C32 SIR/(C13 + C32) SIR in the South-West Region do not 
differ significantly from that of other parts of country. 

Appendix 3 treats with another pair of diseases: gastric ulcer (K25) and duodenal ulcer (K26). 
The specification of Poisson-Binomial model was extended by time factor as data refer to five years 
from 2004 to 2008. An explanatory variable “Social indicator of the economic underdevelopment 
status” was included in the model and its effect proved to be significant. 

Discussion 

Calculation of standardised incidence ratio (SIR) is a widely-used and efficient tool to compare 
risks between populations of different age-gender distribution and our maps follow this 
presentation technique. Results of statistical tests treated above were all consistent with the visual 
impressions of SIR maps. It is important to note that his is not always the case. It is enough to refer 
to the simple fact that C13 SIR/(C13 + C32) SIR + C32 SIR/(C13 + C32) SIR ≠ 1 to demonstrate 
the unavailability of linear models in analysing ratio of SIR values. This is because diseases C13 and 
C32 have different age-gender specific risks (as shown in Table 3.) so standardisation for C13, C32 
and (C13+C32) means three completely different procedures. 

Indicator explanatories were chosen for the sake of simplicity. South-West region was assigned 
arbitrarily: if X(µ) and  X(P) were the indicator variable of West Region (Nyugat-Dunántúl), then b 
would not be significant but beta would be significant. A continuous explanatory variable was 
treated in Appendix 3, but many other possible explanatory variables could have been considered 
here. Our main aim was to demonstrate how the Poisson-Binomial model can be used in an 
epidemiological research. 

The medical relevance of our approach is twofold. On one hand it can be helpful to discover 
common etiological factors for different diseases. On the other hand it might reveal the level of 
uncertainty of ICD coding: the codes of closely related diseases are possibly mixed up. 

Conclusion 

Usual procedures based on SIR mapping are limited to investigate only one disease but cannot 
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be used correctly when analysing the joint distribution of a disease pair. A multilevel Poisson-
Binomial model is introduced here to perform significance tests for ratio of incidences of two 
diseases.  
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