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Abstract
Early and accurate detection of pneumonia on chest X-rays is critical for effective treatment, especially in resource-
constrained healthcare settings. Manual diagnosis is time-consuming and prone to variations, underscoring the
need for robust automated approaches. This study addressed the challenge of improving the diagnostic accuracy
and interpretability of deep learning models for pneumonia detection using chest radiographs. The method
proposes a novel deep-learning framework that combines transfer learning using a pre-trained VGG16 model with
a self-attention-enhanced convolutional architecture. The VGG16 backbone extracts low-level visual features,
whereas the self-attention mechanism highlights clinically relevant lung regions, improving spatial focus during
classification. The proposed model leverages the VGG16 backbone to extract low-level visual features, whereas a
self-attention mechanism enhances the spatial focus by emphasizing clinically significant lung regions. The VGG16
model, guided by attention, achieved a 97% accuracy, precision, and recall for pneumonia detection. In addition,
Grad-CAM (Gradient-weighted Class Activation Mapping) visualizations improved interpretability and model
performance compared with baseline CNNs (Convolutional Neural Networks) and pre-trained architectures. The
integration of a self-attention mechanism into a transfer learning framework significantly improves both the
performance and interpretability of pneumonia detection models using chest X-rays. This approach closely
replicates the spatial reasoning of human experts and offers a scalable solution for clinical deployment. The results
indicate that attention-enhanced deep learning architectures are well-suited for medical imaging tasks, particularly
in resource-constrained settings where diagnostic expertise may be limited.
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Introduction

Pneumonia, a severe inflammatory condition of the lungs, continues to pose a significant global health burden,
particularly in resource-constrained settings. According to the World Health Organization, it remains a leading
cause of mortality among children under the age of five and the elderly, particularly in low- and middle-income
countries [1, 2]. Timely and accurate diagnosis is vital to reduce complications and improve clinical outcomes [3].
Chest X-ray imaging is widely employed as a non-invasive and cost-effective diagnostic modality; however, its
reliability often hinges on the availability of skilled radiologists and is susceptible to inter-observer variability [4,
5]. Now, advances in artificial intelligence (AI) [6], particularly in deep learning (DL) [7], have significantly
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improved medical image analysis by enabling automated high-accuracy diagnostic support. CNNs, known for their
ability to learn hierarchical features from complex imaging data, have demonstrated considerable success in
interpreting chest radiographs [8]. Furthermore, transfer learning, especially with pre-trained architectures such as
VGG16 has become an essential strategy in medical imaging, as it allows for effective model training on limited
annotated datasets while significantly reducing computational time and resource demands [9]. Despite its
effectiveness, VGG16 has demonstrated strong performance in medical image classification tasks, and its
standalone architecture often falls short of capturing the intricate spatial dependencies necessary for accurately
localizing pneumonia-related abnormalities on chest radiographs. Traditional CNNs tend to apply uniform
attention across the entire image, potentially overlooking critical pathological regions and thereby diminishing
diagnostic precision [10, 11]. To address this challenge, Attention mechanisms, particularly self-attention, have
emerged as powerful tools that enable neural networks to dynamically prioritize clinically significant features while
attenuating irrelevant information. However, robust models that seamlessly integrate VGG16 with self-attention
in the context of pneumonia detection while also offering interpretability for clinical decision-making are lacking
[12, 13].

Our study presents an enhanced deep learning framework that integrates a fine-tuned VGG-16 backbone with
a self-attention module to enhance both classification accuracy and model transparency. To further support
explainability, Grad-CAM was employed, offering visual insight into the lung regions that most influence the
model’s diagnostic decisions, thereby reinforcing trust and facilitating clinical validation. The proposed method is
evaluated on a publicly available chest X-ray dataset and benchmarked against leading models such as
DenseNet169, MobileNet, InceptionV3, and Xception using metrics such as accuracy, precision, recall, F1-score,
and ROC-AUC.

Materials and Methods

The applied methodology was structured into six sequential stages: dataset preparation, backbone model
configuration, attention mechanism design, model training, performance evaluation, and comparative
benchmarking.

Dataset Preparation and Class Balancing
We utilized the publicly available CXRs Pneumonia dataset from Kaggle, which comprises 5,863 grayscale

chest radiograph images categorized into two classes: NORMAL (1,583 images) and PNEUMONIA (4,280
images). The dataset presents two key challenges: a significant class imbalance (approximately 37% normal vs.
63% pneumonia), and an inadequately small validation set containing only 16 images. To address these issues, we
adopted a systematic data restructuring approach. The dataset was re-partitioned into training (70%), validation
(10%), and test (20%) subsets, while maintaining the original class distribution. This stratified split yielded 3,504
training images (1,499 normal and 2,005 pneumonia images), 501 validation images (215 normal and 286
pneumonia images), and 858 test images (368 normal and 490 pneumonia images). To counteract this imbalance
in the training set, we implemented a duplication-based oversampling technique for the NORMAL class, increasing
its sample size to match that of the PNEUMONIA class (2,005 images each). The validation and test sets were
imbalanced to reflect the clinical prevalence of pneumonia in real-world settings. To enhance the generalizability
of the model, data augmentation was applied to the training set using a medically informed ImageDataGenerator.
The augmentation pipeline included ±10° rotation, ±10% zoom, ±10% width and height shifts, and horizontal
flipping parameters chosen to introduce anatomically realistic variability while preserving critical diagnostic
features. All images were normalized to the range [0, 1]. Augmentation was applied only during training to ensure
an unbiased evaluation of the validation and test sets.

Transfer Learning Framework with VGG-16 Backbone
This adopted a transfer learning approach using the VGG-16 architecture, pre-trained on ImageNet, as the

foundational model. VGG-16 was selected for its strong feature extraction capabilities and has been widely
validated in medical imaging tasks. The model is initialized with include_top=False and an input_shape of (224 ×
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224 × 3), aligned with the resolution of the chest X-ray images. A selective layer-freezing strategy was applied to
balance computational efficiency and domain-specific learning. The first 10 convolutional layers were frozen to
retain low-level; general-purpose feature detectors, whereas the remaining layers were unfrozen and fine-tuned to
capture task-specific patterns relevant to pneumonia detection. The VGG-16 backbone processes the input
through five sequential convolutional blocks, each reducing the spatial resolution and increasing the depth of
feature representations. The output of the final convolutional layer, block5_conv3, yielded a feature map of size
7×7×512 pixels. This output was subsequently fed into a custom self-attention module, which enhanced the
model’s ability to focus on diagnostically significant regions. The integration of hierarchical convolutional features
with spatial attention enables a more effective localization and interpretation of pneumonia-related abnormalities
on chest radiographs.

Self-Attention Mechanism Implementation
The self-attention module was applied to the 512-channel feature map output by the final convolutional block

of VGG-16. It begins with three parallel 1×1 convolutional layers that project the input features into three distinct
embeddings: query and key (each with 64 channels), and value (with 512 channels). These projections capture
spatial dependencies while preserving the channel-wise information. To compute attention, the query and key
projections undergo matrix multiplication to generate a similarity matrix representing the relationships between all
spatial positions, resulting in a 49×49 attention map (corresponding to the 7×7 spatial grid). This matrix is then
normalized using a softmax function to produce attention weights. The value projection is then aggregated using
these weights through weighted summation, producing context-enriched feature representations that emphasize
spatial regions with high diagnostic relevance. A residual connection was added to retain the original features,
modulated by a learnable scaling parameter γ, which was initialized to zero. This allows the model to progressively
integrate attention-based refinement during training without destabilizing the early feature learning. By enabling
the network to dynamically focus on critical areas, such as pulmonary infiltrates, the self-attention mechanism
enhances interpretability and diagnostic accuracy while preserving the spatial structure of the chest radiograph.

Model Architecture and Training Protocol
The attention-refined features are passed through a carefully structured classification head:
· Global Average Pooling (GAP) to reduce spatial redundancy;
· Dense layer (256 neurons, ReLU) for nonlinear transformations;
· Dropout (rate = 0.5) to mitigate overfitting;
· Sigmoid output neuron for binary classification (NORMAL vs. PNEUMONIA);
· The model contains 16.9M total parameters, with ~4.7M trainable due to partial freezing. The model was

trained using: Optimizer: Adam (learning rate = 1e-4), Loss: Binary cross-entropy, Epochs: 10, Batch size:
8 (to accommodate GPU memory constraints).

Performance Evaluation and Explainability
The model’s performance was comprehensively assessed on a held-out test set containing 858 chest X-ray

images; using a combination of quantitative evaluation and interpretability techniques. Quantitative analysis
includes standard classification metrics, such as accuracy, precision, recall, and F1-score, which together offer a
well-rounded view of the model’s diagnostic performance. A confusion matrix was also utilized to analyze class-
specific behavior, highlighting the distribution of true positives, true negatives, false positives, and false negatives.
In addition, a Receiver Operating Characteristic (ROC) curve was generated, with the Area Under the Curve
(AUC) providing a threshold-independent measure of the model's discriminative ability. To enhance clinical
transparency, Gradient-weighted Class Activation Mapping (Grad-CAM) is applied to the block5_conv3 layer of
the VGG-16 backbone. This technique produces visual heat maps that highlight the most influential regions in the
radiograph contributing to each prediction, offering interpretability aligned with clinical diagnostic reasoning. For
a more detailed understanding of the model’s decision-making under different levels of certainty, test cases were
grouped into four confidence intervals: 0–25%, 25–50%, 50–75%, and 75–100%. Representative examples from
each interval illustrate how the attention of the model shifts with a varying prediction confidence. This integrated
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evaluation framework provides rigorous performance validation and delivers clinically meaningful visual
explanations. By aligning technical robustness with diagnostic transparency, this approach ensures that the model
meets the critical requirements for reliable deployment in real-world medical settings.

The following performance metrics were reported:
· The accuracy of the model is defined as the proportion of correctly classified samples out of the total

number of samples. It shows how often the model predicts the correct label.
Accuracy = (Number of Correct Predictions)/(Total Number of Predictions) (1)
· Precision measures how many of the samples predicted as a specific class were actually of that class. It

focuses on the correctness of positive predictions.
Precision = (True Positives)/(True Positives + False Positives) (2)

High precision means that when the model predicts a sample as a certain class, it is more likely to be correct.
· Recall (also known as sensitivity) measures how many of the actual positive samples were correctly

identified. It focuses on the model’s ability to capture all relevant samples for a particular class. High recall
means that the model is identifying most of the relevant samples. It is crucial in cases like medical diagnosis,
where missing a positive case (false negative) can have serious consequences.

Recall = (True Positives)/(True Positives + False Negatives) (3)
· The F1-Score is the harmonic mean of precision and recall. It provides a balance between precision and

recall, especially useful when the class distribution is imbalanced.
F1-Score= (Precision*Recall)/(Precision+Recall) (4)

If precision and recall are both high, the F1-Score will also be high.

Comparative Model Evaluation
To benchmark the proposed self-attention-enhanced VGG-16 model, its performance was compared with that

of six established deep learning models: DenseNet-169, MobileNet, Inception-v3, Xception, EfficientNetB5, and
ConvNextLarge. Each of these models was implemented under the same preprocessing, training, and evaluation
conditions for fairness. The comparison included both quantitative performance metrics and qualitative Grad-
CAM visualizations, highlighting the strengths and limitations of each architecture in pneumonia classification
tasks. The proposed model demonstrated superior performance across multiple metrics and enhanced
interpretability, validating its effectiveness in real-world diagnostic applications. Figure 1 illustrates a block diagram
of the proposed pneumonia detection framework based on transfer learning with VGG-16 and a self-attention
mechanism.

Figure 1. Overall Block Diagram of VGG-16-Based Model with Self-Attention for Pneumonia Classification.



Priy ankar BISWAS, So u rav SANA, An in d y a NAG, an d Sag ar KUNDU

154 Appl Med Inform 47(4) December/2025

Results

Table 1 summarizes the classification performances of all models, showing better performance of the VGG-
16.

Table 1. Class-wise performance for all applied models.

Applied Model Class Precision Recall F1-score Average
Accuracy

DenseNet-169 NORMAL 0.8418 0.9430 0.8896 0.9368PNEUMONIA 0.9779 0.9344 0.9557
MobileNet NORMAL 0.8793 0.9684 0.9217 0.9556PNEUMONIA 0.9878 0.9508 0.9690
Inceptio-v3 NORMAL 0.8667 0.9051 0.8854 0.9368PNEUMONIA 0.9643 0.9485 0.9563
Xception NORMAL 0.8343 0.9241 0.8769 0.9299PNEUMONIA 0.9707 0.9321 0.9510

EfficientNetB5 NORMAL 0.86 0.99 0.92 0.91PNEUMONIA 0.98 0.84 0.91

ConvNextLarge
NORMAL 0.89 0.95 0.92

0.92
PNEUMONIA 0.94 0.89 0.91

VGG-16
NORMAL 0.93 0.96 0.94

0.97
PNEUMONIA 0.98 0.97 0.98

A comparative overview of the classification outcomes for each applied model, in terms of accuracy, precision,
recall, and F1-score, is presented in Table 2.

Figure 2 presents the training and validation performance of all implemented deep learning models through
accuracy and loss curves over 10 epochs.

Table 2. Performance for all applied models.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
DenseNet-169 93.68 94.12 93.68 93.78
MobileNet 95.56 95.85 95.56 95.62
Inception-v3 93.68 93.79 93.68 93.72
Xception 92.99 93.39 92.99 93.10

EfficientNetB5 91.00 92.00 91.00 91.00
ConvNeXtLarge 92.00 92.00 92.00 92.00

VGG-16 97.00 97.00 97.00 97.00

(a): Accuracy curve of DenseNet-169 (b): Loss curve of DenseNet-169
Figure 2. Accuracy and loss curve of all applied models.
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(c): Accuracy curve of MobileNet (d): Loss curve of MobileNet

(e): Accuracy curve of Inception-v3 (f): Loss curve of Inception-v3

(g): Accuracy curve of Xception (h): Loss curve of Xception

(i): Accuracy curve of EfficientNetB5 (j): Loss curve of EfficientNetB5
Figure 2. (continuation) Accuracy and loss curve of all applied models.
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(k): Accuracy curve of ConvNextLarge (l): Loss curve of ConvNextLarge

(m): Accuracy curve of VGG-16 (n): Loss curve of VGG-16

Figure 2. (continuation) Accuracy and loss curve of all applied models.

Figure 3 presents the Receiver Operating Characteristic (ROC) curve for the proposed model, which serves as
a crucial metric for assessing the effectiveness of binary classification systems.

Figure 3. ROC curve of the proposed model.
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The curve plots the true positive rate (TPR), or sensitivity, against the false positive rate (FPR), equivalent to
1 minus the specificity, across a range of classification thresholds. Each point on the curve represents a different
balance between detecting true positives (pneumonia cases) and minimizing false positives (misclassified normal
cases). The dashed diagonal line indicates the baseline performance of the random classifier. By contrast, the
orange ROC curve for the proposed model lies significantly above this line, highlighting its superior performance.
The AUC was calculated to be 0.9969, reflecting a near-perfect discriminative ability. This high AUC underscores
the model’s exceptional capacity to distinguish between pneumonia and normal cases with minimal errors.

Figure 4 presents the confusion matrices for five deep learning models: DenseNet-169, MobileNet, Inception-
v3, Xception, and the proposed VGG-16, evaluated for pneumonia detection using chest X-ray images.

(a): Confusion matrix of DenseNet-169 (b): Confusion matrix of MobileNet

(c): Confusion matrix of Inception-v3 (d): Confusion matrix of Xception
Figure 4. (continuation) Confusion matrix of all applied models.



Priy ankar BISWAS, So u rav SANA, An in d y a NAG, an d Sag ar KUNDU

158 Appl Med Inform 47(4) December/2025

(e): Confusion matrix of EfficientNetB5 (f): Confusion matrix of ConvNextLarge

(g): Confusion matrix of VGG-16
Figure 4. (continuation) Confusion matrix of all applied models.

The Grad-CAM visualizations highlighting the attention of the proposed VGG-16 model attention on five
representative chest X-ray cases for pneumonia detection are shown in Figure 5.

Figure 5. (continuation) Grad-CAM Visualizations of the Proposed Model's Attention for Pneumonia
Detection.
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Figure 5. (continuation) Grad-CAM Visualizations of the Proposed Model's Attention for Pneumonia
Detection.

For the first instance, in the top row, the chest X-ray appeared normal, and the corresponding Grad-CAM
heatmap exhibited only faint and localized activation, primarily around the mediastinum, with negligible focus in
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the lung regions. The predominance of blue and green hues indicates low attention intensity. With a predicted
pneumonia probability of only 4.18%, the model correctly classified this case as non-pneumonic, showing minimal
concern for abnormal features. In the second instance, the second row, Grad-CAM reveals slightly more noticeable
activation centered around the heart and mediastinum, with minor extension into the lower lung zones. The
heatmap remained largely blue and green, with a yellow touch at the center. The model assigned a 32.68%
probability of pneumonia, suggesting that while some irregularities may exist, the case is still interpreted as normal,
reflecting the model's caution in the absence of strong pathological signals. The third instance, the third row,
presents a more extensive and focused activation, especially within the lower to mid-lung area on the left side (right
side of the image). The heatmap shifted to warmer tones (yellow and orange), signifying elevated attention. With
a predicted probability of 58.03%, the model classified this instance as positive for pneumonia. Localized attention
correlates well with potential radiographic abnormalities, indicating early or mild infection. In the fourth bottom
row of the fourth instance, the Grad-CAM heatmap highlights broad and intense activation throughout both
lungs, particularly in the lower and central lung zones. The vivid red and yellow areas reflect high confidence in
identifying the abnormal features. With a pneumonia probability of 82.61%, the model firmly classifies this as a
positive case, and the widespread activation is consistent with patterns typically observed in moderate-to-severe
pneumonia. Finally, the fifth instance showed the most confident prediction, with a pneumonia probability of
99.94%. The heatmap reveals a concentrated, elongated region of intense activation, marked in bright red and
yellow, spanning a substantial portion of the central lung fields. This precise and vivid focus closely aligns with
common pneumonia-affected areas, clearly demonstrating the model’s capability to localize disease regions with
high accuracy and diagnostic confidence.

Discussion

The results of our study demonstrate that the proposed model performed better than several widely used
networks, including DenseNet169, MobileNet, InceptionV3, EfficientNetB5, and ConvNeXtLarge. It achieved
an accuracy of 97% and an AUC of 0.9969, indicating strong and reliable performance.

The results presented in Table 1 demonstrate that VGG-16 stands out as the top-performing model, achieving
the highest average accuracy of 97%, with strong F1-scores for both NORMAL 0.94 and PNEUMONIA 0.98
classes. MobileNet also performed exceptionally well, with an average accuracy of 95.56%, indicating its efficiency,
despite its lightweight architecture. DenseNet-169 and Inception-v3 showed comparable results, both reaching
93.68% accuracy, whereas Xception and ConvNextLarge followed closely at 92%. EfficientNetB5 achieved 91%
accuracy. These findings suggest that while all models are capable of accurate pneumonia detection, VGG-16
offers the most balanced and reliable performance across both classes in this study.

DenseNet-169 produced 93.68% accuracy with 94.12% precision, 93.68% recall, and 93.78% F1-score (see
Table 2). MobileNet demonstrated superior performance with an accuracy of 95.56% and corresponding precision,
recall, and F1-score values above 95%. With somewhat lower average metrics, InceptionV3 and Xception
produced accuracies of 93.68% and 92.99%, respectively. The ConvNeXtLarge model demonstrated stable but
relatively poorer generalization performance, achieving 92.00% accuracy across all metrics, while the
EfficientNetB5 model achieved 91.00% accuracy. With all four important metrics equal to 97.00%, the suggested
VGG-16 model performed the best. These results demonstrate that VGG16 is the best model for this binary
classification task, although its architecture is comparatively older. It can outperform deeper and more update
models with the help of transfer learning and appropriate fine-tuning.

Figures 2(a) and 3(b) illustrate the DenseNet1-69 model's learning behavior, where both the accuracy and loss
trends indicate effective training with convergence above 94% and a steady reduction in loss, suggesting strong
generalization. In subfigures 2(c) and 2(d), MobileNet demonstrates a consistent performance, achieving nearly
96% accuracy with smoothly declining loss curves, reflecting its robustness. Inception-v3, as shown in subfigures
2(e) and 2(f), also exhibits stable learning with gradual accuracy improvements and a consistent decrease in loss.
Subfigures 2(g) and 2(h) depict the performance of Xception, where the training accuracy improved steadily, but
the validation accuracy showed fluctuations, indicating possible overfitting. The loss curves further support this,
with visible variance. Finally, subfigures 2(i)–2(l) showed that EfficientNetB5 achieved high training accuracy but



Enh an c e d Pn e um o n ia De te c tio n fro m Ch e s t X-ray s v ia VGG16 and Se lf -Atte n tio n Me c h an ism s

[

Appl Med Inform 47(4) December/2025 161

fluctuating validation performance, suggesting overfitting, whereas ConvNeXtLarge demonstrated steady
improvement in accuracy and consistent loss reduction, indicating stable and balanced learning. Finally, subfigures
2(m) and 2(n) highlight the proposed VGG-16-based model, which achieves the highest and most consistent
accuracy of approximately 97%, accompanied by minimal loss. This performance underscores the model’s superior
learning capacity and reliability for pneumonia detection. Overall, Figure 2 demonstrates the advantages of the
proposed model over other architectures in terms of both training stability and validation accuracy.

Figure 4(a) shows that DenseNet-169 recorded 149 true negatives (TN), nine false positives (FP), 28 false
negatives (FN), and 399 true positives (TP), reflecting solid performance but with a moderately high rate of missed
pneumonia cases. As shown in Figure 4(b), MobileNet offers improved diagnostic accuracy with 153 TN, 5 FP,
21 FN, and 406 TP, reducing both false positives and false negatives compared to DenseNet169. In addition,
Figure 4(c) displays the results for InceptionV3, which yielded 143 TN, 15 FP, 22 FN, and 405 TP; While its true
positive rate was comparable, it exhibited the highest number of false positives, leading to more incorrect
pneumonia predictions. As shown in Figure 4(d), Xception achieved 146 TN, 12 FP, 29 FN, and 398 TP, indicating
the lowest sensitivity among all models owing to the highest false negative count and the lowest true positive
detection. Figures 4(e) and 4(f) show the confusion matrices for EfficientNetB5 and ConvNeXtLarge, respectively.
EfficientNetB5 recorded 288 TN, 4 FP, 47 FN, and 246 TP, indicating lower sensitivity due to many missed cases,
while ConvNeXtLarge achieved 276 TN, 16 FP, 33 FN, and 259 TP, reflecting a better balance and higher
sensitivity with slightly more false positives. Finally, the proposed VGG16 model, depicted in Figure 4(g), delivered
the most favorable results: 151 TN, 7 FP, 11 FN, and the highest TP of 416, demonstrating superior diagnostic
precision and reliability. By achieving the highest true positive rate, while simultaneously minimizing false negatives
and maintaining a low false positive count, the VGG16 model outperformed DenseNet169, MobileNet,
InceptionV3, Xception, EfficientNetB5, and ConvNextLarge. These results, as illustrated in Figures 4(a)–4(g),
represent the proposed VGG16 model as the most accurate and clinically effective among the evaluated
architectures.

To better understand the model’s reasoning, Grad-CAM visualizations were applied. The highlighted regions
aligned well with areas typically affected by pneumonia, reinforcing the clinical relevance of the results. These
findings suggest that explainable AI can offer practical support to clinicians, particularly in hospitals or regions
where access to experienced radiologists may be limited. Despite the promising outcomes, this work has some
limitations. The model was trained and tested on a single publicly available dataset, which may not fully represent
the diversity of real clinical environments. Additionally, the evaluation was carried out under controlled
experimental settings. Its performance in day-to-day clinical operations remains to be verified. Future research
should therefore involve datasets from multiple healthcare institutions and real-world testing. Integrating the
system into clinical workflows will also be important to ensure that the approach is robust, scalable, and genuinely
useful for medical practice.

Table 3 shows a summary of deep-learning-based pneumonia detection reported in the scientific literature. Our
proposed approach exhibits high accuracy and high AUC, comparable to other performance metrics reported in
the scientific literature.

Table 3. Summary of deep learning-based pneumonia detection.
Ref Contributions / Methodology Key Findings Limitations Future Directions

[14]
Investigate CNN-based

classification of pneumonia from
chest X-rays

Accuracy of
91.18%

Emphasis on explainable
AI and lightweight

architecture

developing
Explainable AI
models for

transparent and
interpretable decision

[15]
Develop the Inception-v3

architecture and potentially reduce
misdiagnosis rates

Accuracy of
90.48%

Classification spectrum,
enhancing the

generalizability with
multicenter trials, and

classification
spectrum,

multicenter trials, and
clinical
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Ref Contributions / Methodology Key Findings Limitations Future Directions
clinical implementation. implementation

[16]

Proposes LDDNet using a hybrid
CNN/Transformer with

attention; trained on augmented
X-rays/CTs; supports multiclass

classification

>96% accuracy;
3–8% better
sensitivity vs.
VGG-16,

EfficientNet;
<0.1s inference

time

Dataset diversity, clinical
trial needs, GPU reliance,

and excludes non-
infectious diseases

Clinical validation;
extension to broader

pathologies

[17]
Compares 20 CNNs for

pneumonia detection; identifies
EfficientNet-B0 as top performer

94.13% accuracy;
93.5% precision,
93.14% F1-score

Binary only; lacks
pediatric/adult

segmentation; real-world
validation pending

Expand to multiclass;
diverse age-specific

datasets

[18]
Uses Xception, VGG-16/VGG-
19 with transfer learning for 3-
class CXR classification (COVID

vs pneumonia vs normal)

98%
accuracy; >95% in
precision/recall/F

1; robust
differentiation
between COVID
and regular
pneumonia

Dataset diversity, real-
world deployment gap,
and limited disease scope

Broader clinical trials;
test on other
pathologies

[19]
Uses VGG-16, Inception ResNet,
and custom CNN; applies Grad-
CAM; evaluates on two datasets

Custom CNN:
97% accuracy;
IR/VGG16:
~96–97%

Demographic bias drops
to 93% on unbalanced

data

Expand datasets;
cross-modality

testing

[20]
Introduces CP_DeepNet with
custom layers and SqueezeNet;
uses synthetic augmentation

Binary: 99.32%;
Multiclass:
99.62%;

Outperforms RT-
PCR

No cross-validation; only
open-source data;

unknown demographic
diversity

Add fatality/recovery
labels; extend to TB,

cancer

[21]
First model to jointly detect
COVID, TB, and pneumonia

from CXRs using a custom CNN

98.72% accuracy;
recall >96% for
all classes; good
for co-infection

cases

Dataset imbalance; public
dataset bias

Use SMOTE; apply
transfer learning;

include more diseases

[22]
Custom ResNet-50 with
channel/spatial attention;

improved loss function; optimized
for class imbalance

98% accuracy; 4%
higher than

baseline; strong
for imbalanced

data

Vanishing gradient risks;
binary-only scope

Extend to multiclass;
include CT/MRI;
real-world testing

[23]
Uses a hybrid CNN with bottom-

up/top-down attention,
interpretable maps, and limited

data training

95.47% accuracy;
0.92 F1-score;
better than

transfer learning

Binary only; untested on
multi-institutional datasets

Explore quaternion
CNNs; integrate into

hospitals

[24]
Hybrid VGG-16 + ResNet-50; 3-
class classification; uses noise
filtering and augmentation

96.5% accuracy;
F1-score 95.9%;
AUC 0.98

Small dataset; not tested
for co-infections;

generalizability unknown

Try federated
learning; test on

CT/MRI
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[25]
Yolo-v3 achieves 0.32 mAP (vs
0.25 benchmark); optimizes for

low-resource settings

Outperforms
Mask RCNN; fast
processing; high

potential

Class imbalance, GPU
dependence, and limited

iteration

Increase training
cycles; optimize
preprocessing

Conclusions

Our hybrid deep learning framework, which integrates transfer learning via VGG-16 with a custom self-
attention mechanism, demonstrates good performance metrics in improving the accuracy and interpretability of
pneumonia detection in chest X-ray images. By leveraging the feature extraction strengths of VGG-16 CNN-
based model and enhancing spatial focus through attention, the model consistently outperformed traditional
CNN-based approaches in terms of classification accuracy, sensitivity, and specificity. Furthermore, attention-
based visualizations contribute to clinical explainability, making the model a valuable tool for radiological decision-
making support. These promising results highlight the framework’s robustness and potential for real-world
deployment. Future research should aim to validate its generalizability across diverse datasets, incorporate
longitudinal patient data, and expand its application to a wider spectrum of thoracic diseases.
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