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Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system with variable symptoms, disease
courses, and responses to therapy. Diagnosis and prognosis remain ongoing difficulties in the early stages of
the disease. This narrative review considers how artificial intelligence (AI) can improve MS diagnosis,
monitoring, and personalized therapy. Advances include AI-augmented magnetic resonance imaging (MRI),
Optical coherence tomography (OCT), and positron emission tomography (PET) scan interpretation to
improve the diagnostic performance, subtype classification, and relapse prediction. AI also allows remote
monitoring using wearables and smartphone applications, and omics-based interventions allow the
identification of biomarkers and personalized therapy. Future versions, such as explainable AI, federated
learning, and large language models (LLMs), offer improved transparency of models and generalizability.
Although AI holds immense potential for precision medicine for MS, translation to clinical medicine depends
on proof by stringent studies, accommodation of variability of data, and responsible use.
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Introduction

Multiple sclerosis (MS) is a chronic autoimmune, progressive central nervous system (CNS) disease
characterized by immune-mediated inflammation, demyelination, and neurodegeneration [1]. Multiple sclerosis
affects approximately 2.8 million people worldwide, predominantly females between the ages of 20 and 40 [2,
3]. The exact etiology of MS is still not well understood, although it is mediated through a complex interplay
of genetic, environmental, and immune-mediated mechanisms, leading to inflammation, demyelination, and
neurodegeneration [4, 5]. Multiple sclerosis typically manifests with a wide range of neurological deficits ranging
from visual loss, motor machinery weakness, and sensory loss to coordination loss, echoing the multifocal
nature of demyelinating lesions [6].
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The main clinical subtypes of MS include relapsing-remitting MS (RRMS), which is episodic relapses with
or without full recovery; secondary progressive MS (SPMS), which is a relapsing course followed by steady
worsening; primary progressive MS (PPMS), a steady progression of neurological impairment from the
beginning; and progressive-relapsing MS (PRMS), a less common subtype with progressive worsening and
superimposed relapses [7, 8].

Multiple sclerosis presents numerous challenges to both practitioners and patients. Symptoms often
overlap with other neurological diseases, making an accurate diagnosis difficult [9]. Differentiating between
subtypes is also challenging, but necessary for appropriate treatment [8]. Predicting disease progression and
therapy response is complicated by a lack of reliable biomarkers. Integrating clinical data, magnetic resonance
imaging (MRI), and laboratory results , since these data are gathered from multiple sources, requires careful
interpretation, and often lack standardized formats, making the integration process time-consuming and
complex., hindering personalized care [10, 11]. Moreover, monitoring disease activity and patient follow-up
can be difficult, as changes in symptoms and imaging findings may be subtle or inconsistent [12, 13].

Artificial intelligence (AI) offers promising tools for enhancing the understanding and management of MS
[14]. By leveraging advanced computational algorithms, AI can analyze large and heterogeneous datasets such
as MRI scans, clinical records, and genetic profiles more efficiently than traditional methods [14, 15]. Artificial
intelligence has the potential to support early diagnosis, predict disease progression, identify treatment
responses, and personalize therapeutic strategies, thus transforming MS care [14, 16].

This narrative review aimed to assess the use of AI in clinical practice for the management of MS. A
summary of MS and its related issues, context, and rationale for integrating AI methods into MS care, and basic
concepts and methods are provided. This review discusses how AI can improve diagnosis, subtyping
discrimination, disease progression prediction, and the analysis of imaging and digital health data. Current
evidence on AI-based interventions is reviewed, as well as the limitations, challenges to implementation, and
future potential areas of research and clinical applications (Table 1).

Clinical Applications of Artificial Intelligence in Multiple Sclerosis

Artificial Intelligence for Diagnosis
Accurate diagnosis of MS is particularly challenging due to its highly variable presentations, heterogeneous

symptoms, and lack of a definitive diagnostic test [9]. Although clinical examination, MRI, and cerebrospinal
fluid (CSF) analysis are routinely used, these tests tend to yield inconclusive findings, especially in early or
unusual presentations, and there can be a significant overlap with other disorders that share similar clinical and
imaging findings [64].

Multiple sclerosis diagnosis primarily relies on demonstrating lesions dispersed in both time and space,
while excluding other neurological conditions. One of the main diagnostic tools is to demonstrate characteristic
lesion patterns and anatomical involvement [65]. However, numerous inherited and acquired disorders,
including hypoxic-ischemic vasculopathy, small-vessel disease, inflammatory and autoimmune conditions,
vasculitis, and certain toxic, metabolic, and infectious disorders, can mimic MS on MRI, often presenting
features similar to dissemination in time and space [66]. In addition, conditions such as neuromyelitis optica
spectrum disorder (NMOSD) may present with optic neuritis (ON) and transverse myelitis overlapping with
MS, but typically cause more severe attacks and require alternative treatment [67]. Lupus and vasculitis can
similarly affect the CNS, producing white matter lesions and symptoms that resemble MS. Migraine, despite its
transient neurological presentation and white matter hyperintensities on MRI, and small vessel disease,
particularly in older patients, can complicate the radiological picture [68]. Therefore, a comprehensive
differential diagnosis is essential to avoid misdiagnosis and ensure accurate identification and management of
MS.
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Table 1. Applications of Artificial Intelligence in multiple sclerosis management

Application
Domain AI Techniques Data Types Clinical Impact

Diagnosis [17-, 18,
19, 20]

CNNs, SVM, RF MRI, OCT, PET, EEG,
EPs, Biomarkers (serum,
CSF, genetics)

Improved diagnostic accuracy,
differentiation from mimickers
(NMOSD, vasculitis, migraines)

Patient
Stratification [21-,
22, 23, 24, 25]

Clustering, CNN,
GAN, SuStaIn

Clinical data, MRI Early identification of MS subtypes,
prediction of disease course

Prognosis and
Progression [26-,
27, 28, 29, 30, 31]

RF, SVM, CNN, ANN,
hybrid ML/DL

Clinical measures (EDSS),
MRI data, Biomarkers
(NfL, cytokines), wearable
data

Accurate predictions of
progression, CIS conversion,
personalized treatment strategies

MRI Imaging
Analysis [32-, 33,
34, 35, 36]

CNN (U-Net), GMM,
FAST

MRI Automated lesion segmentation,
reduced imaging time and
gadolinium dosage, enhanced lesion
identification

OCT [20, 37-, 38,
39, 40]

CNN, SVM OCT images (RNFL, GCL) Early detection of optic neuritis,
subclinical optic nerve involvement,
monitoring disease progression

PET Scan [41-, 42,
43, 44, 45]

CNN, CF-SAGAN,
SVM

PET scans ([¹¹C] PIB,
TSPO, FET-PET)

Early detection of inflammation,
assessment of microglial activity,
differentiation from gliomas

Digital Health
Tools [46-, 47, 48,
49, 50, 51]

SVM, RF, CNN,
LSTM, XGBR

Wearable devices,
smartphone sensors (gait,
balance, heart rate,
cognitive tasks)

Remote continuous monitoring,
early relapse detection, improved
patient-provider communication

Personalized
Therapy [52-, 53,
54, 55]

CNN, ResNet, U-Net,
SHAP-enhanced
XGBoost, CLAIMS

Clinical data, imaging,
biomarkers (FKLCi, sNfL,
CXCL13, CHI3L1)

Tailored therapy choices, improved
adherence, precision medicine
implementation

Omics Data
Integration [56-, 57,
58]

ANN, CNN,
unsupervised ML

Genomic, transcriptomic,
proteomic, metabolomic
data

Biomarker discovery, early
diagnosis, prediction of treatment
response and disease progression

Emerging AI
Techniques [42,
59-, 60, 61, 62, 63]

Federated learning,
blockchain, GAN,
Diffusion models,
LLMs, RAG

Multimodal data
integration (MRI, OCT,
PET, wearables, EHR)

Addressing data limitations,
enhancing interpretability, realistic
data augmentation, education and
clinical decision support

ANN, Artificial Neural Networks; CF-SAGAN, Conditional Flexible Self-Attention Generative Adversarial Network;
CIS, Clinically Isolated Syndrome; CNN, Convolutional Neural Networks; CSF, Cerebrospinal Fluid; DL, Deep Learning;
EDSS, Expanded Disability Status Scale; EEG, Electroencephalogram; EP, Evoked Potentials; FAST, FMRIB's
Automated Segmentation Tool; FET-PET, Fluoro-ethyl-tyrosine PET; FKLCi, Free Kappa Light Chain Index; GAN,
Generative Adversarial Networks; GCL, Ganglion Cell Layer; GMM, Gaussian Mixture Model; LLMs, Large Language
Models; LSTM, Long Short-Term Memory Networks; ML, Machine Learning; MRI, Magnetic Resonance Imaging; NfL,
Neurofilament Light; OCT, Optical Coherence Tomography; PET, Positron Emission Tomography; RF, Random Forest;
RNFL, Retinal Nerve Fiber Layer; RRMS, Relapsing-Remitting MS; SPMS, Secondary Progressive MS; SVM, Support
Vector Machine; SuStaIn, Subtype and Stage Inference; TSPO, 18-kDa Translocator Protein; XGBR, Extreme Gradient
Boosting Regression.

Many studies have demonstrated that AI applied to MRI-based studies shows great potential for diagnosing
and differentiating MS from similar conditions [15, 69-, 70, 71, 72, 73]. Machine learning (ML) and deep learning
(DL) frameworks have contributed to this progress. Machine Learning models, including random forests (RF)
and support vector machines (SVMs), leverage structured data from clinical records, laboratory tests, and
quantitative MRI values to diagnose patients by detecting subtle lesion features and other patterns [74, 75].
These models integrate heterogeneous data such as lesion size, shape, and location, One study reported an
accuracy of 78.38% (95% CI 72.86–83.23%) in the original cohort and 71.88% (95% CI 53.25–86.25%) in an
external cohort [76], another study reported test-set accuracies of 0.71 for Extra Trees, 0.69 for Logistic
Regression, and 0.67 for SVM in predicting disease progression [77]. Deep Learning models, particularly
convolutional neural networks (CNNs) and two-dimensional radial k-space multiscale convolutional attention
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networks (2DRK-MSCAN), process complex and unstructured MRI data directly and automatically identify
small or newly formed lesions and subtle tissue patterns that may elude human readers [78-, 79, 80, 81].
Convolutional neural networks excel in learning nuanced imaging features, such as lesion shape, distribution,
and tissue texture, without explicit feature engineering, enhancing diagnostic accuracy, and reducing observer
variability; preprocessing processes such as edge detection and wavelet transforms; and model verification and
class balance, further enhancing these AI techniques for MRI-based MS diagnosis faster, more effective, and
more viable in clinical practice [82].

Optical coherence tomography (OCT) is another valuable tool that enables noninvasive quantification of
retinal damage that correlates with neurological and neurophysiological measures in PwMS. OCT provides an
image-based analysis of retinal layers affected by MS, capturing thinning of the Retinal Nerve Fiber Layer
(RNFL) and ganglion cell layer (GCL). Artificial intelligence using SVMs and CNNs leverages OCT data to
classify PwMS from HCs with an accuracy of 86-97% [83-, 84, 85]. Algorithms can also detect asymmetry
between eyes, which is an important early indicator of MS involvement (86). Integrating OCT with AI enhances
early detection, especially for subclinical optic nerve involvement in PwMS [87, 88].

Artificial intelligence has also been successfully applied in various non-imaging diagnostics. Both ML and
DL have shown significant potential for differentiating MS from other neurological conditions using non-MRI-
based diagnostic tests. Studies have shown that AI can detect clinical features such as age, fatigue, balance and
gait disturbances, expanded disability status scale (EDSS), and ambulatory index [14, 89]; ML approaches such
as RF and SVM have also enhanced the evaluation of visual and motor evoked potentials (EPs), which have
a strong correlation with the EDSS in PwMS [90, 91].

Laboratory biomarkers, such as cytokine levels, vitamins, and serum biomarkers, as well as
electroencephalogram (EEG) recordings and exhaled breath analyses, have been integrated into AI models.
These approaches have achieved diagnostic accuracy often exceeding 85-95%, complementing MRI-based
methods and enhancing early detection in resource-limited settings [92]. For instance, EEG-based models with
the advantage of time-frequency analysis and wavelet transforms attained an accuracy of 96%, and blood
transcriptional signatures distinguished definite MS patients from healthy controls with accuracies of up to
97% [93, 94]. Genetic susceptibility markers such as human leukocyte antigen (HLA)-II alleles, particularly
HLA-DRB115:01 and killer-cell immunoglobulin-like receptor (KIR) genes, have been identified using decision
trees, achieving training accuracies of approximately 81% in PwMS [95].

Additional studies using SVMs applied to gene expression profiles from peripheral blood mononuclear cells
revealed differentially expressed genes with a validation accuracy of 86% [96]. Metabolomics and lipidomics
studies using RF and unsupervised ML approaches have identified key blood-based metabolites and lipid
biomarkers related to glutathione metabolism, fatty acid oxidation, and membrane composition, with receiver
operating characteristic area under the curve (ROC-AUCs) over 80-95% [97-, 98, 99]. CSF analyses applying
ML to combined protein and metabolite markers, such as cellular communication network factor 5 (CCN5),
von Willebrand factor (vWF), glial fibrillary acid protein (GFAP), Cluster of Differentiation (CD5), and
interleukin (IL)-12B, achieved accuracies of 89-92% in differentiating MS from other neurological diseases
[100-, 101, 102]. DL frameworks, including CNNs, multilayer perceptrons (MLPs), and hybrid models, have
also been applied to non-imaging data, such as microRNA profiles and smartphone-derived digital biomarkers,
reaching high AUCs and sensitivities in distinguishing MS from HCs [103, 104].

Artificial Intelligence for Disease Phenotyping and Patient Stratification
Accurate measurement of disease progression and course in MS is important for timely and appropriate

clinical intervention. The gradual transition from RRMS to SPMS is often diagnosed retrospectively with a
typical delay of several years. However, there is limited evidence regarding AI-based MS and patient
stratification. However, several studies have shown that models with clustering methods, Subtype and Stage
Inference (SuStaIn), CNNs, generative adversarial networks (GANs), and dimension reduction techniques
enable the detection of subgroups of patients with varying clinical courses, monitoring RRMS to SPMS
transitions [105-, 106, 107].

In a study by Ekşi et al. [70], MRS-based models classified RRMS versus SPMS with 83.33% accuracy and
81.81% sensitivity. Another study conducted a deeper analysis of frequently misclassified PwMS by manually
categorizing them into RRMS and SPMS [107]. These findings suggest that while AI-based approaches are still
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in their infancy, in their initial stages, they have the potential to increase the early detection of worsening MS
and may be used to assist discrimination between distinct subtypes of MS in the clinic.

Artificial Intelligence for Prognosis
Artificial intelligence is increasingly transforming the prognosis of MS. The Latest MS treatment requires

evidence-based predictions of disease progression to tailor therapy to each patient’s unique needs (108). DL
and ML frameworks integrate these dynamic clinical variables, along with MRI data, such as lesion load, gray
matter and white matter volumes, cortical atrophy, and spinal cord atrophy, to build more accurate predictive
models of disease progression [109-, 110, 111, 112]. SVM-based models showed 92% for clinically isolated
syndrome (CIS) conversion to clinically definite MS prediction based on baseline MRI features, such as gray
matter volume and T2 lesion load [113].

Molecular biomarkers, including the serum neurofilament light (sNfL) chain, a powerful predictor of brain
atrophy, cytokines (osteopontin, monocyte chemoattractant protein-1 (MCP-1), chemokine ligand 27 (CCL27),
tumor necrosis factor receptor 1 (TNFR1), oxidative stress, vitamin D levels, and transcriptomic signatures
(e.g., microRNAs), further enrich prognostic models [114, 115]. Wearable sensor data, such as gait and balance
metrics, also provide valuable information [116]. ML techniques, including RF and SVMs, artificial neural
networks (ANNs), and hybrid ML/DL architectures, process multimodal data, achieving robust AUCs up to
0.83, and sensitivities between 67% and 91% in predicting transitions from RRMS to SPMS or sustained
disability progression [117, 118].

Ghafouri-Fard et al. [119] used ANNs trained on genetic data from 401 patients with PwMS and 390 HCs
to predict MS risk. Single nucleotide polymorphisms (SNPs) were analyzed for antisense non-coding RNA in
the INK4 locus (ANRIL), ecotropic viral integration site 5 (EVI5), angiotensin I converting enzyme (ACE),
metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), growth arrest specific 5 (GAS5), H19
imprinted maternally expressed transcript (H19), ninjurin 2 (NINJ2), glutamate metabotropic receptor 7
(GRM7), very late antigen-4 (VLA4), Cbl proto-oncogene B (CBLB), and vascular endothelial growth factor
A (VEGFA) (119). The ANN model achieved an accuracy of 64.73%, a sensitivity of 64.95%, a specificity of
64.49%, and an AUC of 69.67%. The growth arrest-specific 5 (GAS5) TT genotype was protective, while the
angiotensin I-converting enzyme (ACE) DD genotype increased MS risk [119]. ML identified 40 differentially
expressed lipid metabolism-related genes enriched in arachidonic acid metabolism, steroid hormone
biosynthesis, fatty acid elongation, and sphingolipid metabolism in PwMS [120]. The aldo-keto reductase family
1 member C3 (AKR1C3), nuclear factor kappa B subunit 1 (NFKB1), and ATP-binding cassette subfamily A
member 1 (ABCA1) genes were upregulated in PwMS. An ANN model using these genes achieved a high
discriminative power in both training sets (AUC=0.826). High expression was observed in Natural cells, T-
cell, plasmacytoid cells, dendritic cells, regulatory T-cell, and type 1 T-helper cells. A ceRNA network revealed
interactions between hub genes [120].

Artificial Intelligence in Imaging Modalities for Multiple Sclerosis

Magnetic Resonance Imaging-based Applications
The McDonald criteria 2024 serve as the standard for diagnosing PwMS [121]. These criteria have

introduced MRI as an accessible and noninvasive tool as an essential diagnostic parameter [122]. Despite recent
diagnostic advances, due to the differential diagnosis and mimicry of other neurological diseases from MS,
relying on MRI can lead to misdiagnosis and delay the timely initiation of treatment [123, 124]. Recent advances
in ML and DL neuroimaging have gained attention. Using AI in MRI can further minimize imaging time by
reducing the number of sequences in the acquisition process and using generative models to synthesize the
missing sequences without severely influencing imaging quality [125]. Additionally, the use of AI algorithms in
contrast-enhanced images reduces the dose of gadolinium (Gd), which reduces the duration of imaging and
radiation exposure and the adverse health effects of Gd [126].

The use of AI has also helped clinicians to differentiate MS from other neurological diseases [127-, 128,
129, 130, 131, 132, 133]. A recent study showed that the use of CNNs with MRI has greater accuracy than
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experts in differentiating MS from NMOSD [132]. Recent advances in AI for analyzing MRI scans of People
with MS (PwMS) have helped clinicians automatically differentiate other lesions, including contrast-enhancing
lesions, cortical lesions, central vein sign in white matter lesions, and perivenular lesions from MS [128-, 129,
130, 131]. Additionally, the combination of AI-assisted analysis with clinical evaluations performed well in
distinguishing MS from CNS vasculitis, migraine, and noninflammatory white matter disorders [132, 133].

The segmentation of MS lesions in MRI images poses significant challenges because of the requirement for
a substantial volume of training data. The study by Cetin et al. [14], which utilized a CNN in the U-Net
algorithm, achieved an accuracy of 79% in the dice similarity coefficient (DSC) score for MS lesion
segmentation. This means that it can aid in the early detection of MS and reduce the workload. Various studies
have been conducted on the use of MRI-based AI for segmentation and lesion volume determination, with
results generally acceptable to users [125]. Although automated segmentation methods have been introduced,
manual segmentation by experts still has advantages over these AI-introduced algorithms. The overlap between
graymatter intensity and MS lesions in MRI images, along with variability in lesion shapes and a large number
of voxels to locate at the boundary between normal and abnormal tissue, makes accurate differentiation difficult
for automated algorithms [134]. Several ML-based approaches have been developed to segment MS lesions.
For example, using a Gaussian mixture model (GMM) to detect lesions in T1 weighted (T1-w) scans, followed
by FMRIB's Automated Segmentation Tool (FAST)-trimmed likelihood estimator to distinguish non-lesional
voxels in T1-weigheted (T1-w), T2-weigheted (T2-w), and T2-w fluid-attenuated inversion recovery (FLAIR)
images, achieved a DSC of 0.82, indicating that the proposed method achieves superior segmentation
performance compared to conventional approaches, while requiring less computational time (135).

Optic Coherence Tomography
Optic Coherence Tomography (OCT) is used as a sensitive, specific, and noninvasive test for assessing ON

in PwMS. As an accessible and specialized tool, OCT can be performed by nonspecialists and can reduce the
number of MRI requests [136, 137]. Recent studies have demonstrated that OCT can aid in the early
identification of MS, even in individuals without visual signs, measure progression and axonal damage, or assist
in situations with unclear diagnoses [136]. Various studies have evaluated the role of AI in enhancing the
diagnostic value of OCT for PwMS. Although AI-based methods alone cannot increase the accuracy of OCT
to 100%, their role in measuring the RNFL and GCL and aiding in the early diagnosis of MS is noteworthy
[138, 139]. Additionally, changes in the outer GCL during the early stages of MS can be detected by AI-based
OCT (140). The swept-source OCT (SS-OCT) and spectral domain OCT (SD-OCT) modalities have shown
good capabilities in differentiating PwMS from HCs (20, 141). Furthermore, GCL measurement has proven to
be more effective than RNFL measurement [20, 136]. While AI-enhanced OCT has an enormous potential for
increasing the diagnostic abilities for ON and MS, particularly in early diagnosis and disease progression
monitoring, it cannot achieve perfect accuracy on its own. Nonetheless, combining AI with OCT techniques,
such as SS-OCT and SD-OCT, as well as focusing on measuring the GCL, provides useful insights that can
improve diagnostic approaches.

Positron Emission Tomography
Although MRI is the preferred modality for diagnosing MS, positron emission tomography (PET) can assist

in detecting inflammation before structural changes occur and in the early stages of diagnosis by providing
functional molecular information. Additionally, the use of PET can be beneficial in determining the treatment
strategy for each individual and assessing the response to intervention by evaluating inflammation [142].

The use of the radiotracer [¹¹C] PIB in PET scans can directly measure the myelin content. This method is
invasive and often not readily available. The use of the conditional flexible self-attention GAN (CF-SAGAN)
algorithm, without the need for radioactive substance injection, assesses brain myelin content and the response
to remyelination treatment by capturing complex spatial relationships in brain lesions [143].

The specific technique of 18-kDa translocator protein (TSPO) PET, which evaluates microglial activity as
a reflection of the activity of the innate immune system, helps determine inflammation around MS lesions.
Inflammation plays a role in disease progression and disability in PwMS (41). In addition, prediction of disability
using TSPO-PET signals has been reported. Several studies have shown that increased TSPO signals, especially
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in individuals with apparently healthy white matter, may be associated with greater future disability, as measured
by the EDSS [144, 145].

Du et al. [143] used DL in PET imaging to predict the annualized relapse rate (ARR) in patients with RRMS.
A multi-branch CNN was used to automatically separate lesions, resulting in a high performance (Dice score:
0.81), which means that there is a close overlap between the automated segmentation model and manual
segmentation by experts. Kebir et al. [146] demonstrated that fluoro-ethyl-tyrosine PET (FET-PET) imaging
combined with a support vector model algorithm can differentiate MS from glioma with an AUC of 0.94.

Therefore, while MRI is considered the preferred modality for MS management, the use of PET in
combination with AI can aid in detecting early inflammation, treatment strategies, and responses. The use of
AI algorithms in PET scans can also assist in evaluating myelin content and microglial activity, which are
essential for understanding disease progression, prognosis, and predicting disability in PwMS.

Digital Health Tools and Artificial Intelligence in Multiple Sclerosis

Wearables and Sensor Data
Digital health technologies such as wearables, smartphones, health, and social media combined with AI are

transforming MS care by enabling the remote, continuous, and personalized monitoring of symptoms [147,
148]. Wearable device-monitored continuous assessment has become a norm for in-life testing of motor and
physiological signs of MS [149]. Wearable biosensors, such as inertial measurement units (IMUs) [150],
smartwatches [151], and specialized devices, such as digital biomarkers of the Verily company [152], enable
real-time, non-invasive monitoring of gait [153], sleep, and heart rate in PwMS [150, 154]. These devices, often
worn on the wrist, ankle, or trunk, enable high-frequency data capture across daily life activities, thus providing
a more ecologically valid alternative to episodic clinical evaluations [155].

Over time, features such as stance duration, turning movements, and body angular speed showed strong
alignment with established clinical disability scales in MS [147]. Daily activity metrics, especially the highest
number of steps taken per day, were more closely linked to patient-reported symptoms such as fatigue and
mobility limitations than traditional clinical scores [152]. Continuous ambulatory monitoring using wearable
sensors can detect circadian heart rate patterns that distinguish between inflammatory and progressive MS
states. Inflammation is associated with increased sympathetic activity at night and reduced circadian variability,
whereas progression has been shown to globally reduce heart rate variability and circadian adaptation [156].
Vocal fatigue is another parameter that can be assessed using acoustic monitoring in a PwMS. By analyzing
speech samples, such as sustained vowels, reading tasks, and spontaneous speech, researchers can extract vocal
biomarkers related to fatigue, including fundamental frequency, cepstral peak prominence, background noise
level, and sound pressure level [157].

Artificial Intelligence algorithms, including SVM, RF, elastic net regression, CNNs, long short-term memory
networks (LSTM), fully connected neural networks (FCNN), and extreme gradient boosting regression
(XGBR), have been deployed on gait and sensor data [158-, 159, 160, 161]. The Dresden multidimensional
walking assessment (DMWA) study used accelerometry to quantify gait velocity, mediolateral sway, cadence,
and angular velocity, which were then fed into AI models [162]. SVMs also achieved the highest F1 scores for
fall risk prediction using the everyday memory impairment questionnaire (EMIQ) and 12-item Multiple
Sclerosis Walking Scale (MSWS-12) (0.80), which can protect PwMS from adverse events [163, 164]. Graz
normal (GR_N), Graz dyskinetic (GR_D), Mobility Lab normal (ML_N), Mobility Lab dyskinetic (ML_D),
Mobility Lab static with eyes open (ML_S_EO), and Mobility Lab static with eyes closed (ML_S_EC) captured
during normal walking [165], dual-task walking showed a slowing of gait depending on MS disease severity
[166, 167], and Romberg stances were processed using 5-fold cross-validation repeated 10 times and validated
via permutation tests [168].

IMUs and multisensor platforms, such as Mobility Lab (e.g., APDM) and Gait Analysis Instrumentation
and Technology with real-time interactive tracking evaluation (GAITRite), provided detailed gait and balance
assessments [169]. GAITRite’s 8-meter walkway with pressure sensors captures spatiotemporal parameters
during normal (GR_N) and dual-task walking (GR_D) [169]. Romberg tests (ML_S_EO and ML_S_EC)
recorded sway during eyes-open and eyes-closed stances [153]. Sleep quality and fatigue were assessed using
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apid Eye Movement (REM) and psychomotor vigilance tests (PVT), revealing functional impairment not
captured by EDSS alone [152].

Despite the promising potential of biosensors and digital health tools for MS monitoring, several technical
and practical challenges limit their widespread clinical adoption [147]. Sensor drift and motion artifacts can
degrade data quality over prolonged wear in uncontrolled environments [170]. Device displacement or external
interference further affect signal quality [171]. Interdevice variability arising from differences in hardware
models, manufacturers, sensor placements, and firmware contributes to data heterogeneity, complicating cross-
study comparisons and data pooling [172]. User compliance remains a major hurdle; discomfort, maintenance
requirements (charging, syncing), and perceived burden often lead to incomplete or missing data streams [173].
Continuous ecological monitoring generates massive, unstructured datasets that require advanced
preprocessing techniques, including artifact removal, signal filtering, missing data imputation, and feature
extraction, which require substantial computational resources [174]. Interoperability across diverse platforms
and sensor types is hindered by the lack of standardized data formats and protocols. Privacy and security
concerns are paramount; sensitive health data must be stored and transmitted in compliance with regulations
such as the General Data Protection Regulation and Health Insurance Portability and Accountability Act [174].

Establishing privacy-compliant data storage and management pipelines is essential for ensuring patient
confidentiality. Furthermore, the scalability of data-processing pipelines and the computational demands of
sophisticated AI models pose challenges [175]. Models must be transparent and interpretable to gain clinician
trust and regulatory approval, which is a major barrier to their clinical integration. Addressing these multifaceted
challenges is critical for translating biosensor innovations into reliable and actionable clinical tools to improve
MS management and outcomes. Major challenges include inconsistent sensor placement, signal artifacts, and
device nonadherence. Many tools remain undervalidated across diverse populations, and long-term clinical
outcome correlations are limited. Interfacing sensor data with clinical systems remains a key technical and
regulatory hurdle [147, 176, 177].

Smartphones and Mobile Applications
Smartphones provide accessible platforms for real-time, home-based neurological monitoring in MS [148]

Mobile health (mHealth) and electronic health (eHealth) technologies are transforming MS care by enabling
remote, patient-centered monitoring and decision-making [178]. Tools such as Floodlight MS, Mon4t®, [179]
MS Sherpa [180], MSReactor [181], and MSCopilot, which are MSFC components, including the 25-Foot walk
test (25FTW), which evaluates ambulatory speed, the 9-Hole Peg Test (9-HPT) [182], and the tablet-based MS
Performance Test (MSPT) [183] enable home-based evaluation of motor, depression [153], cognitive [184],
and early signs of relapse [185]. For example, the Floodlight Open study engages patients through gamified
tasks, including finger tapping, symbol-digit modality tests (SDMT), and walking exercises. Metrics derived
from these smartphone sensors, such as accelerometers and gyroscopes, show strong correlations with clinical
measures such as EDSS and neuro-quality of life (QoL). Balance and gait parameters, including step variability
and turn duration during walking tests, demonstrated good reproducibility and effectively differentiated MS
subtypes [171, 186, 187].

Smartphones generate passive digital biomarkers such as step cadence, inter-step variability, phone unlock
frequency, and screen response times, offering sensitive indicators of motor and cognitive function that are
aligned with MS-specific clinical scores and patient-reported outcomes [188]. Another study using the dreaMS
app integrated ten cognitive games to monitor cognition in PwMS. The participants played the game twice
weekly for five weeks. Most games showed moderate to strong correlations with standard cognitive tests and
performance improved over time. Users rate the games as enjoyable and meaningful, supporting their potential
for long-term use [189].

Telemedicine supports chronic disease management, improves specialty consultation, and increases patient-
physician communication [190]. The Veterans Health Administration (VHA) initiated a telemedicine program
for PwMS, spinal cord injury, and mental health, supporting teleconsultation between specialties [191]. Remote
access to MRIs and notes is possible with CPRS and VistA Imaging [191]. Cost savings resulting from
telewound care and telepsychiatry effectively improved the depression results. Telerehabilitation with Polycom
and VTEL allows remote orthoses and gait tests [192, 193].
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Platforms such as the multiple sclerosis documentation system 3D (MSDS3D) and the integrated care portal
for MS (IBMS) portal offer tools for tracking DMTs adherence, satisfaction, and symptom progression,
supporting patient-provider shared decision-making [194, 195]. The remote management of MS is complicated
by neurological heterogeneity. Bandwidth and frame rate latency impede motor and visual tests [196]. Future
initiatives should focus on interoperability, accessibility, patient-centered design, and regulation, applying
policies such as the Interoperability and Patient Access Rule and tools such as Health eVet for successful digital
care [190, 196]. CMS interoperability, patient access rule, and open application programming interfaces (API)
try to eliminate obstacles [196].

Social networks play an essential role in the care of MS by providing real-time treatment information [197].
An assessment revealed that therapy switches, primarily from injectables to oral therapy, frequently secondary
to side effects or physician recommendations, with peer influence on adherence being obvious [197-, 198, 199,
200, 201]. Social networks, however, present challenges; misinformation and experimental therapy may confuse
patients. Clinical decision-making is complicated owing to placebo effects, with privacy, consent, and validity
of the data being ambiguous. Data in the network are frequently unstructured, biased, and difficult to interpret
clinically [200, 202, 203]. Systems such as Patient-Reported Outcome Measures (PROMs) and approved CMS
APIs seek to address explainability, trust, and interoperability in MS care [204-, 205, 206].

Personalizing Therapy Choices

Multiple sclerosis requires a precision medicine approach owing to its heterogeneous presentation and
progression. Disease-modifying therapies (DMTs) differ in mechanism, efficacy, and effect; therefore, accurate
biomarker interpretation is crucial for guiding personalized treatment. The primary biomarkers for the
prediction of response to treatment are the free kappa light chain index (FKLCi), sNfL, serum c-x-c motif
chemokine ligands (CXCL)13 [207], osteopontin, neurofilament heavy chain (NFH) [208], and chitinase 3-like
protein 1 (CHI3L1) [209]. For example, elevated FKLCi levels have been linked to a higher risk of treatment
failure due to persistent intrathecal immunoglobulin synthesis driven by CNS-resident B cells, which reflects
ongoing immune activation, even in treated patients [210]. sNfL, a marker of axonal injury, increases with
inflammation-induced damage and decreases with effective therapy, making it a useful indicator of treatment
response and disease activity control. CXCL13 levels decreased with natalizumab, fingolimod, or rituximab
[211, 212]. Osteopontin declines with natalizumab or glatiramer [213, 214]. The NfL and NFH levels decreased
with DMT [215, 216], reflecting reduced neurodegeneration. CHI3L1 tends to decrease in response to DMTs
such as natalizumab and fingolimod. This reduction is interpreted as a biomarker response to therapy, and may
reflect reduced inflammatory activity [217, 218].

Artificial Intelligence models enhance the personalization of MS care by integrating these biomarkers with
imaging and clinical data to guide therapeutic decisions [219]. DL architectures, such as CNNs, ResNet, U-Net,
long short-term memory (LSTM) networks, gated recurrent units (GRU), and graph neural networks (e.g,
Graph Convolutional Network, Graph Attention Network) can extract complex patterns from imaging and
clinical data [109, 220, 221]. Interpretable AI models, such as SHAP-enhanced Extreme Gradient Boosting,
have predicted outcomes with no evidence of disease activity (NEDA) [222, 223]. These advanced models
enable precise risk stratification and early identification of aggressive disease courses, thereby facilitating
personalized DMT selection. The Clinical, Laboratory, Administrative, Imaging, and Medical Services
(CLAIMS) project exemplifies AI-assisted MS care by integrating multimodal patient data for individualized
prognostic modeling [219].

Additionally, AI-driven adherence models have shown potential for several chronic diseases [224]. ML
algorithms have promised to transform adherence monitoring of MS by identifying which patients are more
likely to be nonadherent according to clinical, demographic, and behavioral variables [225]. By analyzing such
data as past missed doses, appointment adherence, cognitive test scores, mood symptomatology, and
medication side effects, AI systems can determine which patients are most likely to struggle with medication
persistence. This allows clinicians to proactively intervene in individualized education, guidance, or alternative
therapy [219, 225].
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Biomarkers and Omics Data in Multiple Sclerosis Artificial Intelligence Analyses

Genomic and Transcriptomic Data
Omics approaches, including genomics, transcriptomics, metabolomics, and proteomics, are connected to

the genome (DNA), transcriptome (RNA), and proteome (proteins), respectively [226]. In the past decade,
omics data has emerged as an essential tool for understanding molecular pathways and identifying molecules
involved in the pathogenesis of MS [226]. Furthermore, omics approaches not only play a significant role in
screening patients before the onset of clinical symptoms in the early stages but also help determine diagnostic
accuracy, prognosis, treatment response, and personalized medicine through reliable biomarkers [226, 227].
Moreover, the use of multi-omics data with combined analyses from different omics groups can assist in
answering fundamental biological questions, including gene content and mutations, protein activities, post-
translational modifications, and metabolomics [228]. The complexity and large volume of multi-omics datasets
pose challenges in data analysis. In this regard, the use of AI-assisted analysis for molecular subtypes and disease
classification has attracted the attention of researchers. Additionally, the use of AI, particularly DL and artificial
neural networks (ANN), can help address these challenges by identifying biomarkers, disease onset patterns,
advanced data integration, target therapy, and personalized medicine [229].

Ghafouri-Fard et al. [119] reported an accuracy of 64.73% in predicting the risk of MS using single-
nucleotide polymorphism genotypes analyzed by ANN. Acquaviva et al. [230] employed ML models on the
transcriptomic profiles of peripheral blood mononuclear cells to classify and stage MS. In another study,
Omrani et al. [231] used whole-blood transcriptomics and deep RNA sequencing to distinguish PwMS from
HCs, achieving a diagnostic accuracy of 97%. Furthermore, applying ML to whole blood transcriptomes and
deep RNA sequencing analyses can identify the risk of CIS progression to MS at the first clinical visit with an
accuracy of 74%, leading to early treatment initiation in high-risk patients. In the absence of this method,
predicting CIS progression to MS requires multiple clinical visits and frequent follow-up. In addition, Sun et al.
[103] applied a CNN model to identify MS-related microRNAs, which contribute to MS pathogenesis by
modulating gene expression in immune and glial cells [232]. Its results report an ROC AUC of 0.87,
outperforming other existing methods [103].

Proteomics and Metabolomics
Proteomics has been used to identify effective drug targets and novel regulatory mechanisms. Routine MS

treatments are based on the inflammatory process of the disease, and a significant number of studies have
examined the role of proteomics in this area [226]. The use of blood and CSF biomarkers in the early diagnosis
of MS as well as in determining the risk of potential complications and prognosis has attracted attention in
recent years. In this context, several studies have evaluated the accuracy and role of AI in analyzing such data.

Ata et al. [233] used ANNs to evaluate changes in metabolomics profiles and their relationship with the
severity of MS and disease parameters. The results of this study reported an accuracy of 87%, sensitivity of
82.5%, and specificity of 89% for diagnosing MS in the HC group. The results of the study by Brummer et al.
[234] indicated that sNfL chain levels, in combination with MRI predictors, can aid in the early diagnosis of
cognitive dysfunction in PwMS. Lötsch et al. [98] applied unsupervised ML to assess the serum concentrations
of 43 lipid markers in 102 PwMS and 301 HC subjects. This method can be a highly accurate (95% CI: 88.89
to 100) diagnostic tool, providing a noninvasive alternative technique for MS detection.

Finally, omics methods are transforming our understanding and treatment of MS. These strategies improve
early screening and personalized therapy by identifying accurate biomarkers and biological pathways. The use
of AI improves data analysis and classification accuracy, allowing noninvasive diagnostics and better prognoses.
Notably, studies have shown encouraging findings for predicting MS risk and development, highlighting the
possibility of merging multiomics data with AI technology to further MS research and treatment techniques.
Despite the promising results of using AI for biomarker analysis in PwMS, this study has some limitations.
Generally, most studies involve a limited number of patients and the generalizability of the results is reduced
in the absence of external validation analysis.

Integration of Multimodal Data Holistic View of Multiple Sclerosis
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The manifestations of MS are variable, and multiple factors, including demographic factors, environmental
factors, and comorbidities influence disease progression and manifestations. MS significantly increases the
burden on individuals and society owing to rising disability-rated costs [235]. Currently, progression is
independent of relapse activity based on EDSS and confirmed disability worsening (CDW). These two criteria
are insufficient for diagnosing heterogeneous symptoms and identifying the disease in subclinical stages [236].
These issues have resulted in diverse treatment responses (237). Despite receiving DMTs, only 30–40% of
patients remain stable for 5–7 years [238]. Currently, assessing treatment response relies on evaluating imaging
lesion activity, which is inadequate for predicting long-term outcomes for patients, and emphasizes the need
for a precision medicine approach [239, 240]. Although emerging biomarkers show promise for treatment
monitoring [241], they often fail to capture MS’s full complexity of MS, lack real-world validation, and remain
inadequate for progressive MS [242].

Artificial Intelligence -based approaches offer solutions to current issues by integrating multiple longitudinal
biomarkers, including advanced motor function assessments, optical coherence tomography (OCT), magnetic
resonance imaging (MRI) markers, cognitive function, and patient-reported outcomes [219]. AI and its methods
can assist in analyzing complex interactions between variables, capturing multidimensional patient data,
adopting appropriate treatments, determining prognosis, predicting complications, and advancing personalized
medicine [243]. Combining this data with AI leads to a better understanding of each individual's disease process
and a more effective classification of disease types. AI-based interventions, combined with a holistic overview,
play a significant role in transforming MS care by enhancing personalized treatment and improving QoL.

Limitations, Challenges, and Implementation Barriers

One of the limitations of AI in MS is the lack of large, heterogeneous, and representative datasets (16). The
majority of current AI models are trained on single-center data that do not reflect the entire clinical spectrum
of MS [16, 244]. This lack of diversity leads to overfitting, where models perform well internally but fail in
external validation, as shown by accounts of greatly reduced accuracy in research when models are applied to
unseen cohorts [109, 136, 245, 246]. Moreover, datasets can reflect structural biases regarding race, ethnicity,
socioeconomic status, or access to healthcare that lead to systematic inaccuracies or unfairness for specific
patient groups in their predictions [247, 248]. Overcoming these data challenges will require international,
multicenter collaborations embracing findable, accessible, interoperable, and reusable (FAIR) data principles
and privacy-preserving strategies such as federated learning paired with blockchain for secure, decentralized
model training [249, 250].

A major barrier to the clinical adoption of AI tools for MS is the lack of interpretability. DL systems operate
as black boxes, and clinicians cannot easily understand or trust their output [251]. While local and global
explanation methods such as shapley additive exPlanations (SHAP) interacting with RF and XGBoost
Explainable Boosting Machines have shown potential, they are underutilized in the real world [136, 252]. AI
predictions cannot be confidently checked or explained to patients by clinicians in the absence of
interpretability, which threatens shared decision making and patient trust [253-, 254, 255, 256, 257].

Moreover the performance of AI systems depends not only on the quality of the training data, but also, and
importantly, on algorithm choice, which may similarly limit generalizability across different MS subtypes or
clinical settings [258-, 259, 260].

Important ethical considerations also remain inadequately addressed: questions of data ownership, potential
commercial exploitation of patient data, and adequacy of patient consent with regard to the use of AI-assisted
clinical decision-making are also major concerns [261]. In addition, it is still unclear who is responsible in the
case of AI-related diagnostic error - whether it is the clinician, the healthcare institution, or the AI developer -
further complicating broader implementation [262].

The introduction of AI into existing clinical workflows also presents pragmatic challenges. Studies on
devices such as mdbrain® suggest that AI reduces the labor burden of radiologists and makes monitoring
lesions efficient, However, technical limitations remain; for example, the software may fail to process
approximately 2% of examinations [263]. Clinicians also report concerns about false positives near artifact-
prone regions, which can lead to unnecessary follow-up or missed opportunities for timely intervention. One
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study showed that the central vein and peripheral rim signs are examples of promising findings in susceptibility-
weighted imaging (SWI), which could further improve the accuracy of ML software assessments [264-, 265,
266, 267, 268]. Furthermore general absence of direct comparisons between AI systems and existing diagnostic
or therapeutic methods limits the strength of arguments supporting the superiority of AI over standard clinical
approaches [254]. Further validation studies will be necessary before such biomarkers can be reliably integrated
into workflows where AI would be applied.

Emerging Opportunities and Future Directions

Despite these challenges, emerging technologies present unprecedented opportunities for transforming MS
care. Federated learning, in combination with blockchain, offers a powerful solution for overcoming data
limitations and privacy concerns [269, 270]. By enabling decentralized training across institutions from various
datasets without the need to export sensitive patient data, federated learning preserves privacy while capitalizing
on the diversity required for generalizable models [270]. Blockchain provides tamper-evident auditable records
of data usage, creating patient trust through accountability [271]. Initiatives such as the MS data alliance [272]
and European MS platform [273] are well positioned to leverage such technology, crafting co-working networks
that enable ethical and strong AI development.

Large language models (LLMs) are promising in MS care, research, and education because they produce
human-like text and process multimodal information [274]. Clinically, they break down complicated medical
information into patients, schedule appointments, and produce personalized risk assessments and treatment
summaries from patient information and up-to-date literature [274-, 275, 276]. LLMs interpret unstructured
Electronic Health Record (EHR) information, detect patterns, and combine imaging, biomarkers, and
wearables to improve diagnosis and customize treatments. In education, they produce interactive case modules
and easy-to-understand explanations for pwMSs, improving comprehension and interaction [277]. Techniques
such as retrieval-augmented generation (RAG) can refine outputs using MS-specific literature to reduce errors
and outdated content [278, 279].

Generative AI corrects class imbalance in MS datasets by generating MRIs and mimicking sparse disease
patterns, enriching pediatric or PMS phenotypes [280-, 281, 282]. Data augmentation improves segmentation
performance and accuracy, according to the BraTS 2023 and Shifts 2022 competitions [283, 284].

To address interpretability and credibility challenges with regulators and clinicians, SHAP value plots and
attention maps demystify AI predictions on MS [252, 285, 286]. Including this program in AI output reports
with reference to quality metrics will provide consistent and actionable results.

To advance regulatory acceptance and enable widespread adoption, there is a pressing need for more
prospective multicenter clinical trials that rigorously evaluate AI tools under real-world conditions. The
inclusion of predictive models and digital biomarkers within trials will offer compelling evidence for clinical
utility and safety. Regulatory agencies, including the EU and the FDA [256, 257], are increasingly developing
frameworks for explainable and trustworthy AI, underscoring the necessity of aligning trial designs with these
evolving standards.

Artificial Intelligence facilitates individualized risk prediction and treatment in the early phase with
multimodal data, such as MRI, OCT, walk tests, NfL biomarkers, and patient self-reporting. Data readiness
among patients implies that the tools are able to enable decision support with individualized risk profiles to
enable patients and tailor therapy [287].

Cross-disease AI and transfer learning take advantage of common imaging and wearable features across
diseases, such as NMOSD, Guillain-Barré Syndrome (GBS), viral encephalitis, rheumatoid arthritis (RA), and
systemic lupus erythematosus (SLE), to identify biomarkers, facilitating advancement where multiple sclerosis
(MS)-specific data are sparse [288, 289]. Standardized benchmarks, including medical image computing and
computer-assisted intervention (MICCAI) and IEEE International Symposium on Biomedical Imaging (IEEE
ISBI), allow for unbiased assessments [290, 291]. Ensemble models enhance reliability, and future benchmarks
should evaluate their efficiency, resource utilization, and generalizability. Centralized standardized platforms
will increase reproducibility and deployment.
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Conclusion

Artificial Intelligence can transform MS care by integrating and analyzing multimodal data from imaging,
biomarkers, clinical variables, and therapeutic precision. It can address existing challenges in the diagnosis,
monitoring, and prognosis of MS. Additionally, considering the variable manifestations of PwMS and the
diagnostic challenges present, it can assist in early diagnosis and the selection of appropriate treatments.
Moreover, advances in personalized medicine can enhance the QOL of patients and help prevent long-term
complications. Despite its great promise, AI adoption in MS care faces significant difficulties including a diverse
and representative dataset, restricted interpretability of AI outputs, inadequate external validation, and
regulatory readiness. To overcome these challenges, multicenter data sharing that adheres to FAIR principles,
development of explainable and transparent AI models, rigorous prospective validation, and seamless
integration into clinical processes will be required.
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