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Abstract 
Clustering is a powerful tool for analyzing time-series data related to cancer markers. Cancer Antigen 15-3, a 

glycoprotein commonly associated with breast cancer, was a key focus of this study. Time-series data of White 

Blood Cells (WBC) and Cancer Antigen 15-3 from a metastatic breast cancer patient were utilized as references to 

assess the clinical relevance of nine clustering algorithms. The WBC time-series measurements were particularly 

noteworthy because the specific therapy administered to the patient clearly defined all clustering parameters, 

including the number of clusters and their boundaries. This provided a unique opportunity to rigorously evaluate 

the performance of the nine clustering algorithms. Remarkably, seven to nine of these algorithms achieved perfect 

alignment between the observed clusters and the expected results based on the therapy. The application of these 

clustering methods to the time-series data revealed that K-means with Euclidean distance, K-means with 

Manhattan distance, and K-medoids were the most effective algorithms for analyzing both Cancer Antigen 15-3 

and WBC time-series data.  
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Introduction 

The application of unsupervised machine learning algorithms presents unprecedented opportunities to uncover 

patterns in clinical biomarkers, enhancing healthcare outcomes and providing new insights into disease 

mechanisms [1]. Cancer Antigen 15-3 (CA 15-3) is a glycoprotein commonly associated with benign and malignant 

breast diseases, particularly in cases of breast cancer involving liver or bone metastases. Identified as a potential 

breast cancer marker in the 1980s [2], CA 15-3 has since been extensively studied, ultimately becoming a routine 

marker in clinical practice for breast cancer ([3] and references therein). Notably, this study [3] demonstrated that 

systematic monitoring of CA 15-3 facilitated the early detection of metastatic disease in 37% of cases through 

rising CA 15-3 levels. However, current guidelines [4–6] advise against serial CA 15-3 measurements during early 

breast cancer follow-up due to limited evidence of a survival benefit. Despite these recommendations, many 

oncologists continue to perform serial assessments of CA 15-3 levels in asymptomatic patients with early-stage 

breast cancer. 

In a recent study [7], the authors of the current work monitored plasma CA 15-3 levels over time in a male 

patient with metastatic breast cancer. This study was the first to apply cluster analysis to CA 15-3 time-series data, 
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revealing two distinct clusters, one corresponding to the pre-recurrence phase and the other to the metastatic stage. 

The transition between these clusters provides valuable insight into the onset of metastasis. 

The current  study marked a significant advancement, as time-series measurements of both White Blood Cells 

(WBC) and CA 15-3 from the same patient (as in the previous study) were used to evaluate the clinical relevance 

of various clustering algorithms. WBC time-series measurements were particularly valuable; due to the specific 

therapy administered, clustering parameters such as the number and boundaries of clusters were well-defined, 

enabling rigorous testing of different clustering algorithms. Additionally, applying various clustering methods to 

CA 15-3 time-series data identified the most suitable algorithms for analyzing these specific time-series. 

Materials and Methods 

Medical History of the Patient 

The medical history of this 69-year-old male patient is detailed in a previous study [7]. In brief, the patient 

underwent right mastectomy on April 27, 2020, due to a malignant tumor. Thirty-seven months later, on May 18, 

2023, elevated CA 15-3 levels (37.2 U/mL) were detected for the first time. As the CA 15-3 levels continued to 

rise, a Positron Emission Tomography/Computed Tomography (PET/CT) scan was performed on August 11, 

2023, revealing metastatic breast cancer in the trochanteric region of the left leg. This metastasis was classified as 

grade 3 according to the Elston and Ellis grading system [8] and showed Estrogen Receptor (ER) and Progesterone 

Receptor (PR) positivity, Human Epidermal Growth Factor Receptor 2 (HER2) expression at 20%, and a Ki-67 

(MIB1) proliferation index of 30%. Following this diagnosis, the medical team at the “Theagenio” Cancer Hospital 

in Thessaloniki, Greece initiated the following treatment regimen for the patient: 

1. Letrozole (Letrozole Teva 2.5 mg) in combination with palbociclib (Ibrance 125 mg). 

2. Two monthly injections (XGEVA 120 mg/1.7 ml 1 VIAL) (ARVEKAP 3.75 mg INJ). 

3. Radiotherapy (10 sessions, with each session delivering 3 Gy of radiation, totaling an absorbed dose of 30 

Gy). Additionally, prior to commencing radiotherapy, prophylactic threading with a long-gamma nail was 

performed on September 13, 2023.  

Palbociclib, in combination with Letrozole, is a widely used first-line treatment for patients with hormone 

receptor-positive (HR+), HER2-negative advanced or metastatic breast cancer. However, one of the most 

common side effects of palbociclib is a reduction in the white blood cell (WBC) count due to a decrease in 

neutrophils, which are a key component of WBCs. 

Time-series measurement of WBC and plasma CA 15-3  

The patient’s WBC count and plasma CA 15-3 levels were monitored using regular blood tests. Over the past 

four years, 28 blood tests for WBC levels were conducted between October 15, 2020, and September 19, 2024, 

while 37 blood tests for CA 15-3 levels were performed between April 14, 2020, and September 19, 2024, across 

two microbiology laboratories. CA 15-3 levels were measured using an enhanced chemiluminescence immunoassay 

in the first laboratory and a microparticle chemiluminescence immunoassay in the second [7]. To ensure accuracy, 

measurements were cross-validated three times by conducting tests at both laboratories with no more than a two-

day interval between each paired test. Discrepancies in results between the two laboratories occurred at rates of 

11.3%, 1.9%, and 3.6%, respectively [7]. White blood cell (WBC) count was measured using a complete blood 

count test, a standard procedure that provides information on various types of cells in the blood.  
Because time-series measurements of WBC and plasma CA 15-3 were collected at irregular intervals, a 

combination of linear interpolation and moving average smoothing techniques was employed to preprocess the 

data and convert it into regularly spaced intervals. A 30-day interval was used for the WBC time-series, whereas a 

15-day interval was applied to the plasma CA 15-3 series. 

Cluster Analysis 

Cluster analysis of the WBC and plasma CA 15-3 time-series was conducted on the Wolfram Cloud platform 

provided by Wolfram Research [9], using the Wolfram Language for computational tasks. The processed  data 

were sampled at regular intervals of 30 days for WBC and 15 days for CA 15-3, and structured as pairs (x,y), where 
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x represents the number of days since the initial measurement (October 15, 2020) for WBC and April 14, 2020, 

for CA 15-3 and y corresponds to the WBC values (in k/μL) and CA 15-3 values (in U/mL), respectively This 

analysis utilized the built-in "Find Cluster" function. The time-series processed data (x,y)  are provided as input to 

the "Find Clusters" function. The function internally treats each data point (x,y) as an entity to be clustered. The 

"Find Clusters" function offers a variety of clustering algorithms. In this study, the following clustering algorithms 

were applied: 

1. K-means algorithm [10] (with Euclidean distance): The K-means algorithm aims to minimize within-

cluster variance, which is the sum of the squared Euclidean distances between each point in a cluster and 

its centroid. This minimization process is achieved through iterative refinement until convergence, where 

the assignments of data points to clusters and the positions of the cluster centroids stabilize. In the context 

of clustering, similarity refers to the degree of resemblance or proximity between the data points within the 

same cluster. Data points that are similar to each other are grouped together into the same cluster, whereas 

dissimilar data points are placed into different clusters. The number of clusters should be predefined. 

2. K-means algorithm [10] (with Manhattan distance): The K-means algorithm with Manhattan distance is 
a variation of the standard K-means clustering algorithm, where the metric used to measure the "closeness" 
between data points is the Manhattan distance instead of the Euclidean distance. While Euclidean distance 
measures the straight-line distance between two points, Manhattan distance, also known as taxicab or city 
block distance, measures the distance between two points along the axes at right angles, following a grid-
like path that moves only vertically and horizontally. Similar to standard K-means, this variation partitions 
data into K clusters; however, the use of the Manhattan distance affects both point assignments to clusters 
and centroid updates. As with K-means clustering, the number of clusters must be predefined. 

3. K medoids [11]: The K-medoids algorithm is a clustering method similar to K-means, but with one key 
difference: instead of using the mean of the data points to represent the centroid of each cluster, K-
medoids uses an actual data point (called a medoid) as the cluster center. This makes K-medoids more 
robust to outliers than K-means, because medoids are less affected by extreme values. The number of 
clusters should be predefined. 

4. DBSCAN [12]: DBSCAN is a density-based clustering algorithm that groups points that are closely packed 

together while marking points that lie alone in low-density regions as outliers (noise). Unlike K-means, 

DBSCAN does not require that the number of clusters be specified beforehand. It is well suited for datasets 

with clusters of similar density and is robust to noise and outliers. 

5. Neighborhood Contraction [13]: The Neighborhood Contraction method is a density-based clustering 

algorithm that typically merges clusters iteratively by contracting the neighborhood of a point to find the 

most representative center or centroid for each cluster. This method is generally more suitable for data 

with complex structures, where clusters may not have spherical or compact shapes. 

6. Jarvis-Patrick [14]: Jarvis-Patrick clustering is a density-based clustering algorithm that groups data points 

based on their shared nearest neighbors. This algorithm is primarily used to identify clusters in datasets 

that might not be spherical or regularly shaped, and it can effectively handle noisy or sparse data. This is 

particularly useful when the goal is to find clusters based on the similarity of data points, where each data 

point is clustered with others that have a high number of nearest neighbors. Jarvis-Patrick does not require 

that the number of clusters be specified beforehand. 

7. Mean Shift [15]: Mean Shift is a non-parametric clustering algorithm that does not require the number of 

clusters to be specified in advance. It is based on the idea of shifting a window or "kernel" iteratively to 

find the mode (or peak) of the data distribution that represents the center of a cluster. This algorithm is 

often used for image segmentation, object tracking, and density estimation tasks, particularly when the 

number of clusters is unknown or when the clusters have arbitrary shapes. 

8. Spectral [16]: Spectral clustering is a popular clustering technique that uses the properties of graphs and 

linear algebra to identify clusters. Unlike traditional clustering methods such as K-means, which often rely 

on distance-based measures, spectral clustering is especially effective for datasets with non-convex or 

complex cluster structures. 

9. Gaussian Mixture [17]: The Gaussian Mixture Model (GMM) clustering algorithm is a probabilistic model 

that assumes that data points are generated from a mixture of several Gaussian distributions, each 

representing a cluster. Unlike K-means clustering, which assigns points to clusters by minimizing the 
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Euclidean distance, GMM clustering assigns points probabilistically to multiple clusters, based on their 

likelihood.  

Clustering methods 4–9 do not require the number of clusters to be specified in advance, whereas methods 1–

3 require a predefined cluster count. In this study, the optimal number of clusters for methods 1–3 was determined 

using the elbow method [18]. To identify this optimal number, the K-means algorithm was run for various values 

of K (the number of clusters). For each K, the Within-Cluster Sum of Squares (WCSS), which quantifies the 

average squared distance of all points in a cluster from the cluster centroid, is calculated. A plot of WCSS versus 

K was then generated, and the optimal cluster number corresponds to the point where the rate of decrease in 

WCSS notably slows, creating an "elbow" shape in the plot. After determining the optimal number of clusters, the 

final computations were conducted using clustering algorithms 1 to 3. In contrast, for algorithms 4–9, the 

computations were more straightforward, as these methods do not require the number of clusters to be specified 

beforehand. 

The quality of clustering was evaluated using the Silhouette Score [19], which is a valuable metric for assessing 

clustering performance. This score quantifies how well each data point fits into its assigned cluster and how 

separate it is from the other clusters. The silhouette score (s) ranges from -1 to 1, with higher values indicating 

better-defined and more appropriate clusters. A score close to +1 indicates that the data points are well clustered. 

Specifically: 

1. s ≥ 0.7, indicating a strong clustering. The clusters were well defined, with a clear separation between them. 

Data points are closely grouped within their own clusters and are far from the neighboring clusters. 

2. 0.5 ≤ s < 0.7: reasonably good clustering. The clusters are well separated, although there might be a slight 

overlap or proximity between neighboring clusters. 

3. 0.25 ≤ s < 0.5: moderate clustering. Clustering is acceptable but not very distinct. Some points may be close 

to other clusters, suggesting some overlap or less clear cluster boundaries.  

4. s ≈ 0: The data points are near or on the decision boundary between clusters, being equally close to two or 

more clusters, implying overlapping or ambiguous boundaries. 

5. s close to -1: Misclassified data points. These points are closer to the center of another cluster than their 
assigned cluster, typically indicating poor clustering, where data points do not naturally fit into the assigned 
cluster. 

Results 

Time-Series of WBC and CA 15-3 Results 

Figure 1 shows the time-series measurements of WBC. Open circles represent raw WBC measurements, while 

filled circles represent measurements processed using a combination of linear interpolation and moving average 

smoothing techniques to transform the irregularly sampled data into regularly spaced 30-day intervals. The vertical 

dashed line marks September 15, 2023, when the patient began treatment with palbociclib (Ibrance, 125 mg). As 

noted previously, palbociclib commonly causes several side effects, with a reduction in WBC being the most 

frequent. Therefore, it is important to understand the patterns shown in Figure 1. The group of values before 

September 15, 2023, is expected to be significantly higher than the group of values after this date. This suggests 

that in a cluster analysis of the WBC time-series measurements, two clusters should be anticipated, with September 

15, 2023, marking the boundary between them. Therefore, the pattern in Figure 1 allows for the rigorous testing 

of different clustering algorithms, as both the expected number of clusters and the boundaries between them are 

clearly defined. 
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Figure 1. Open circles represent the raw WBC measurements, while filled circles represent measurements 
processed using a combination of linear interpolation and moving average smoothing techniques to transform 

the irregularly sampled data into regularly spaced 30-day intervals. The vertical dashed line marks September 15, 
2023, the date when the patient began treatment with palbociclib (Ibrance, 125 mg).  

Figure 2 shows the time-series measurements of plasma CA 15-3. Open circles represent raw CA 15-3 

measurements, while filled circles represent measurements processed using a combination of linear interpolation 

and moving average smoothing techniques to transform the irregularly sampled data into regularly spaced 15-day 

intervals. 

 

Figure 2. Open circles represent the raw plasma CA 15-3 measurements, while filled circles represent 
measurements processed using a combination of linear interpolation and moving average smoothing techniques 

to transform the irregularly sampled data into regularly spaced 15 -day intervals. 

The marked increase observed in July–August 2023 was attributed to the presence of metastatic cancer in the 

trochanteric region of the patient's left leg. Conversely, a significant decrease reflected the effectiveness of the 

treatment administered by oncologists. The continuous rise in CA 15-3 levels from 30 U/mL began at the end of 

2022. This was approximately 7.5 months before the PET/CT scan revealed metastatic breast cancer in the 

trochanteric region of the left leg. Finally, there is no clear explanation from oncologists for the smaller second 

peak in CA 15-3 levels shown in Figure 2. According to them, several factors could cause temporary false-positive 
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results, including infection, trauma, and other conditions. 

Cluster Analysis Results 

To enhance readability, Table 1 lists the code numbers (C/N) of the nine clustering algorithms used in this 

study. 

Table 1. Code Numbers (C/N) and Names of the 9 clustering algorithms used in this work. 

C/N Name C/N Name C/N Name 

1 K-means (with Euclidean distance) 4 DBSCAN 7 Mean Shift 

2 K-means (with Manhattan distance) 5 Neighborhood Contraction 8 Spectral 

3 K medoids 6 Jarvis-Patrick 9 Gaussian Mixture 

 

The number of clusters (K) must be specified in advance for the 1-3 clustering algorithms. In this study, the 

optimal number of clusters was determined using the elbow method. Figures 3 and 4 show the Within-Cluster 

Sum of Squares (WCSS) values for WBC and CA 15-3, respectively, plotted against the number of clusters. The 

"elbow" point in these plots indicates the optimal number of clusters, occurring where the rate of decrease in 

WCSS significantly slows, forming an "elbow" shape. Figures 3 and 4 clearly show that the optimal number of 

clusters is K=2 for both WBC and CA 15-3. 

 

Figure 3. The WCSS values against the number of clusters for WBC. 

 

Figure 4. The WCSS values against the number of clusters for CA 15-3 
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Figure 5 presents the clustering analysis of WBC-processed data sampled at 30-day intervals using clustering 

algorithms with Code Numbers 1, 2, 3, 4, 5, 6, and 9. All these algorithms consistently identified two distinct 

clusters. Closed circles denote WBC values in cluster 1, whereas filled circles represent values in cluster 2. The 

vertical dashed line marks September 15, 2023, the start date of the patient’s treatment with palbociclib (Ibrance 

125 mg). This clear distinction between clusters shows that the algorithms with Code Numbers 1, 2, 3, 4, 5, 6, and 

9 effectively separated the WBC time-series data into two periods: period A, corresponding to the pre-treatment 

phase, and period B, representing the post-treatment phase with palbociclib. Additionally, the Silhouette Score for 

the WBC time-series cluster analysis using these clustering algorithms was 0.509, indicating reasonably good 

clustering. This score suggests that the clusters are fairly well separated, although there may be a slight overlap or 

close proximity between neighboring clusters. 

 

Figure 5. Identification of two clusters in the WBC time-series data, processed and sampled at 30-day 
intervals using clustering algorithms with Code Numbers 1, 2, 3, 4, 5, 6, and 9. Open circles represent 

measurements associated with cluster 1, while filled circles denote those in cluster 2. The vertical dashed line 
marks September 15, 2023, the start date of the patient’s treatment with palbociclib (Ibrance, 125 mg).  

 Cluster analysis of the WBC time-series using clustering algorithms with code numbers 7 and 8 failed to identify 

the two expected clusters in the data. Specifically, Algorithm 7 detected 10 clusters, whereas Algorithm 8 identified 

nine clusters. 

Table 2 shows the number of clusters identified in the CA 15-3 time-series data, which were processed and 

sampled at 15-day intervals using the nine clustering algorithms. Notably, for clustering algorithms 1–3, the number 

of clusters was predetermined using the elbow method (Figure 4). 

Figures 6 and 7 present the clustering analysis of the processed CA 15-3 data, sampled at 15-day intervals, using 

algorithms designated by code numbers 1–3 and 9, respectively. Closed circles represent CA 15-3 values assigned 

to Cluster 1, while filled circles denote values in Cluster 2. The analysis achieved a Silhouette Score of 0.594, 

indicating reasonably good clustering performance. Clustering algorithms with code numbers 1–3 effectively 

identified two distinct clusters, corresponding to the pre-recurrence phase and the metastatic stage [7]. Similarly, 

the clustering algorithm with code number 9 also identified two clusters. Although the feature highlighted in Figure 

7 is intriguing and will be discussed in the following section, it lacks clinical relevance. 
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Table 2. Number of clusters identified in the CA 15-3 time-series data using the nine clustering algorithms.  

C/N Name Number of Clusters 

1 K-means (with Euclidean distance) 2 

2 K-means (with Manhattan distance) 2 

3 K medoids 2 

4 DBSCAN 7 

5 Neighborhood Contraction 4 

6 JarvisPatrick 25 

7 Mean Shift 15 

8 Spectral 9 

9 Gaussian Mixture 2 

 

Figure 6. Clustering analysis of CA 15-3 processed data, sampled at 15-day intervals, using clustering 
algorithms with Code Numbers 1, 2, and 3. Open circles represent CA 15-3 values in cluster 1, while filled circles 

denote values in cluster 2. 

 

Figure 7. Clustering analysis of CA 15-3 processed data, sampled at 15-day intervals, using clustering 
algorithm with Code Number 9. Open circles represent CA 15-3 values in cluster 1, while filled circles denote 

values in cluster 2. 
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Discussion 

Cluster analysis of the WBC time-series using nine clustering algorithms yielded promising results. Most 

algorithms, specifically those numbered 1, 2, 3, 4, 5, 6, and 9, successfully identified the two distinct clusters 

expected within the WBC time series. The first cluster spans October 15, 2020, to August 31, 2023, and the second 

extends from September 30, 2023, to the most recent measurement on September 24, 2024. Notably, the last WBC 

data point in Cluster 1 was recorded 15 days before the patient began treatment with palbociclib, whereas the first 

WBC data point in Cluster 2 was recorded 15 days after treatment commenced. Additionally, the WBC values in 

Cluster 1 were more than twice as high as those in Cluster 2 were. Because a significant reduction in WBC levels 

is a well-known side effect of palbociclib, and the boundary between the two clusters aligns with the treatment 

start date, these clustering results underscore the clinical relevance of algorithms 1, 2, 3, 4, 5, 6, and 9 for analyzing 

the specific WBC time-series data. By contrast, clustering algorithms with code numbers 7 and 8 failed to identify 

the two expected clusters in the time-series data. Instead, Algorithm 7 detects 10 clusters, while Algorithm 8 

identifies nine clusters. 

Clustering algorithms 4, 5, 6, 7, and 8 failed to identify the expected two clusters in the CA 15-3 time-series 

data (see Table 2), which represent the two distinct phases: the pre-recurrence stage and the metastatic stage. 

Specifically, the clustering algorithms Jarvis-Patrick (code number 6) and Mean Shift (code number 7) produced a 

disproportionately high number of clusters—25 and 15, respectively—compared to the anticipated two clusters. 

While the Jarvis-Patrick and Mean Shift algorithms are indeed commonly applied to large datasets due to their 

clustering efficiency and ability to handle complex structures, it is worth noting that their performance may vary 

depending on the dataset's characteristics. For smaller datasets, these algorithms might not always provide 

meaningful or interpretable clusters. However, it is worth noting that although the Jarvis-Patrick algorithm 

identified a disproportionately high number of clusters in the CA 15-3 time-series data, its performance was 

successful for the WBC time-series cluster analysis. On the other hand, the Mean-Shift algorithm also failed in the 

cluster analysis of the WBC time-series, identifying ten clusters instead of the expected two. 

 Although clustering algorithm 9 (Figure 6) successfully identified two clusters in the CA 15-3 time-series, the 

clustering lacked clinical relevance. Instead of differentiating between the pre-recurrence and metastatic stages, it 

merely segregated CA 15-3 values based on their levels, with lower values assigned to Cluster 1 and higher values 

to Cluster 2. However, this approach was problematic. For instance, from November 1, 2024, to March 21, 2024, 

a period within the metastatic stage, there is a subset of four CA 15-3 measurements ranging between 26 and 29 

U/mL, with an average of 27 U/mL. These values show similar variation and mean as those in the pre-recurrence 

stage (27.6 ± 1.6 U/mL), yet they do not indicate a return to the pre-recurrence stage. However, in certain cases, 

this algorithm may offer some utility in tracking CA 15-3 values to monitor illness progression, provided its 

limitations are clearly understood.  

Clustering algorithms 1, 2, and 3 successfully identified the two expected clusters in the CA 15-3 time-series 

data. Data points in Cluster 1 correspond to the period before the recurrence of the disease (metastatic breast 

cancer), whereas those in Cluster 2 represent the advanced (metastatic) stage of the disease. The Silhouette Score 

for this clustering analysis was 0.594, indicating reasonably good clustering performance. A difference was 

observed in the boundary between the two clusters identified in this study compared with a previous study [7]. In 

this analysis, time-series measurements were processed using a combination of linear interpolation and moving 

average smoothing, converting the irregularly measured data into regularly spaced 15-day intervals, while the 

previous study used the original irregularly measured CA 15-3 data. In the present study, the first CA 15-3 value 

associated with Cluster 2 was observed at the end of December 2022, whereas in a previous study [7], it was noted 

on November 9, 2022. These dates correspond to 7.5 months and 9 months, respectively, before recurrence was 

confirmed via PET/CT. This aligns well with the findings of De Cock et al. [3], who reported a gradual increase 

in CA 15-3 levels 6–12 months prior to the detection of the first metastases.  

In summary, three algorithms—K-means with Euclidean distance, K-means with Manhattan distance, and K-

medoids—demonstrated clinical relevance for analyzing both WBC and CA 15-3 time-series data. However, it is 

important to note that this study was limited to a single patient, and these findings cannot be generalized without 

further research involving additional patients. Nevertheless, this study represents a step forward toward the 

ultimate goal of investigating the potential to detect the onset of the metastatic stage through cluster analysis of 
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CA 15-3 time-series data. 

Conclusions 

This study utilized time-series measurements of White Blood Cells (WBC) and plasma Cancer Antigen 15-3 
(CA 15-3) from a patient with metastatic breast cancer to evaluate the clinical relevance of nine clustering 
algorithms. Among these, K-means with Euclidean distance, K-means with Manhattan distance, and K-medoids 
proved clinically relevant for analyzing both WBC and CA 15-3 time-series data. However, the study was limited 
to a single patient. To validate and generalize these findings, further research involving additional patients and 
time-series datasets is necessary.  

List of Abbreviations: CA 15-3: Cancer Antigen 15-3; WBC: White Blood Cells; DBSCAN: Density-Based Spatial Clustering 
of Applications with Noise; PR: Progesterone Receptor; ER: Estrogen Receptor; HER2: Human Epidermal Growth Factor 
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Tomography/Computed Tomography. 

Author Contributions: Not applicable, as there is only one author. 

Funding: This research received no external funding. 

Ethics Statement: Not applicable. 

Data Availability Statement: The author declares that the data supporting the findings of this study are available within the 
paper as figures. The computations for clustering the WBC and CA 15-3 time-series data using the nine clustering algorithms 
were carried out on the Wolfram Cloud platform using the Wolfram Language. 

Acknowledgments: The author would like to thank the medical staff of the following departments for the high-quality care 
provided during his treatment: 1) the C' Department of Clinical Oncology and Chemotherapy at Theagenio Cancer Hospital 
of Thessaloniki, 2) the 3rd Department of Orthopedics at Papageorgiou Hospital, and Dr. Anna Makridou, Chief of the 
Medical Physics Department at Theagenio Cancer Hospital of Thessaloniki. 

Conflict of Interest: The author declares no conflict of interest. 

References 

1. Mariam A, Javidi H, Zabor EC, Zhao R, Radivoyevitch T, Rotroff DM. Unsupervised clustering of 
longitudinal clinical measurements in electronic health records. PLOS Digit Health. 2024;3(10):e0000628. doi: 
10.1371/journal.pdig.0000628. 

2. Gang Y, Adachi I, Ohkura H, Yamamoto H, Mizuguchi Y, Abe K. [CA 15-3 is present as a novel tumor 

marker in the sera of patients with breast cancer and other malignancies]. Gan To Kagaku Ryoho. 

1985;12(12):2379-86. Japanese.  

3. De Cock L, Heylen J, Wildiers A, Punie K, Smeets A, Weltens C, Neven P, Billen J, Laenen A, Wildiers H. 

Detection of secondary metastatic breast cancer by measurement of plasma CA 15.3. ESMO Open. 

2021;6(4):100203. doi: 10.1016/j.esmoop.2021.100203.  

4. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, Zackrisson S, Senkus E; ESMO 

Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Early breast cancer: ESMO Clinical 

Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(8):1194-1220. doi: 

10.1093/annonc/mdz173.  

5. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast RC Jr; 

American Society of Clinical Oncology. American Society of Clinical Oncology 2007 update of 

recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25(33):5287-312. doi: 

10.1200/JCO.2007.14.2364.  

6. Khatcheressian JL, Hurley P, Bantug E, Esserman LJ, Grunfeld E, Halberg F, Hantel A, Henry NL, Muss HB, 

Smith TJ, Vogel VG, Wolff AC, Somerfield MR, Davidson NE; American Society of Clinical Oncology. Breast 

cancer follow-up and management after primary treatment: American Society of Clinical Oncology clinical 



Time-series of White Blood Cells and Cancer Antigen 15-3 in a Metastatic Breast Cancer Patient, Referencing Clustering 
Algorithm Assessment 

 

[ 

Appl Med Inform 46(4) December/2024 139 
 

practice guideline update. J Clin Oncol. 2013;31(7):961-5. doi: 10.1200/JCO.2012.45.9859. 

7. Clouvas, A. (2024) “Exploring the Significance of Cluster Analysis on Time-Series Measurement of Plasma 

Cancer Antigen 15-3 in a Patient with Metastatic Breast Cancer”, Applied Medical Informatics, 46(3). Available 

at: https://ami.info.umfcluj.ro/index.php/AMI/article/view/1064 (Accessed: 28 October 2024). 

8. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in 

breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19(5):403-10. doi: 

10.1111/j.1365-2559. 1991.tb00229. 

9. Wolfram Research, Inc., Wolfram|Alpha Notebook Edition, Champaign, IL. 2024. 
10. MacQueen J.B. Some methods for classification and analysis of multivariate observations Proceedings of the 

5th Berkeley Symposium on Mathematical Statistics and Probability 1967 University of California Press 281-

297.Available from: http://projecteuclid.org/euclid.bsmsp/1200512992 (c) (Accessed: 28 October 2024). 

11. Kaufman, Leonard; Rousseeuw, Peter J. (1990-03-08), "Partitioning Around Medoids (Program PAM)", Wiley 

Series in Probability and Statistics, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 68–125, 

doi:10.1002/9780470316801.ch2.  

12. Ester, Martin; Kriegel, Hans-Peter; Sander, Jörg; Xu, Xiaowei (1996). Simoudis, Evangelos; Han, Jiawei; 

Fayyad, Usama M. (eds.). A density-based algorithm for discovering clusters in large spatial databases with 

noise (PDF). Proceedings of the Second International Conference on Knowledge Discovery and Data Mining 

(KDD-96).  

13. Wolfram Language & System Documentation Center "NeighborhoodContraction" (Machine Learning 

Method) https://reference.wolfram.com/language/ref/method/NeighborhoodContraction.html (Accessed: 

28 October 2024). 

14.  Jarvis R.A, Patrick E.A. (1973). Clustering Using a Similarity Measure Based on Shared Near Neighbors. IEEE 

Transactions on Computers, 22(11):1025-1034. doi: 10.1109/T-C.1973.223640 

15. Wolfram Language & System Documentation Center "MeanShift" (Machine Learning Method) 

https://reference.wolfram.com/language/ref/method/MeanShift.html  (Accessed: 28 October 2024). 

16. Wolfram Language & System Documentation Center "Spectral" (Machine Learning Method) 

https://reference.wolfram.com/language/ref/method/Spectral.html (Accessed: 28 October 2024).  

17. Wolfram Language & System Documentation Center "GaussianMixture" (Machine Learning Method) 

https://reference.wolfram.com/language/ref/method/GaussianMixture.html(Accessed: 28 October 2024). 

18. Kodinariya TM, Makwana PR. Review on determining number of Cluster in K-Means clustering. Int J Adv 

Res Comput Sci Manag Stud. 2013;1:2321-7782. 

19. Rousseeuw PJ. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. 

Computational and Applied Mathematics. 1987;20:53-65. doi:10.1016/0377-0427(87)90125-7. 

http://projecteuclid.org/euclid.bsmsp/1200512992
https://reference.wolfram.com/language/ref/method/NeighborhoodContraction.html
https://reference.wolfram.com/language/ref/method/Spectral.html

