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Abstract 
The ability to predict heart illness was essential for prompt diagnosis and treatment. Using the Cleveland Heart 

Disease dataset, this study tested a number of machine learning models, including LSTM networks, Random 

Forest, Gradient Boosting, XGBoost, and Logistic Regression. In order to handle missing values, transform 

categorical variables, and binarize the target variable, the dataset underwent pre-processing. AUC-ROC, F1-score, 

recall, accuracy, and precision were used to assess each model. SHAP values shed light on the significance of each 

characteristic. The results showed that XGBoost was the most accurate model, exceeding the other models with 

an accuracy of 90% and an AUC-ROC of 0.94. This study highlighted the potential of advanced machine learning 

techniques for improving heart disease prediction and contributed to the development of better diagnostic tools 

for patient care. 

Keywords: Heart Disease Prediction; Machine Learning; XGBoost; Gradient Boosting; Long Short-Term 

Memory (LSTM); SHapley Additive exPlanations (SHAP) 

Introduction 

Heart diseases have become the leading cause of death worldwide, taking hundreds of thousands of lives 

annually. Its early prediction will immensely reduce its prevalence and result in better outcomes by allowing early 

interventions [1]. Of late, with the development of machine learning and artificial intelligence, medicine-related 

diagnostics have opened up newer avenues for predictive analytics in healthcare [2].  

Known benchmarks, one of which is the Cleveland Heart Disease dataset, provide a ground for testing 

machine-learning models concerning heart disease prediction [3]. The Cleveland Heart Disease dataset focuses on 

patients who undergo cardiac catheterization at the Cleveland Clinic Foundation. It includes both male and female 

patients, aged from 29 to 77 years old, showing different grades of heart disease risk factors. The data were collected 

between 1981 and 1984 by Robert Detrano, M.D., Ph.D., at the V.A. Medical Center, Long Beach, and Cleveland 

Clinic Foundation. This is a publicly available dataset from the UCI Machine Learning Repository 

https://archive.ics.uci.edu/ml/datasets/heart+disease. It includes a comprehensive set of features like age, sex, 

chest pain type, resting blood pressure, serum cholesterol, fasting blood sugar, resting electrocardiographic results, 

maximum heart rate achieved, exercise-induced angina, ST depression induced by exercise relative to rest, the slope 

of the peak exercise ST segment, the number of major vessels colored by fluoroscopy, and thalassemia. Such a 

broad feature space makes this dataset very suitable for training machine learning models, providing insight into 

their predictive capability [4, 5]. 

In this paper, I will implement several machine learning models and then compare their performance 

concerning heart disease prediction. These include traditional methods on the one hand, such as logistic regression, 

and advanced ones on the other hand, such as random forest, gradient boosting, and XGBoost, together with 
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LSTM networks. All these models have unique benefits: Logistic Regression confers simplicity and interpretability, 

while methods such as Random Forest and Gradient Boosting are based on ensemble methods with very complex 

interactions among features. It is because of their high performance and robustness that boosting techniques, 

specifically, XGBoost, rose to prominence. Chen and Guestrin [4] in their study revealed the scalability of 

XGBoost, which is therefore applicable to large datasets. Comparative studies in research by Natekin and Knoll 

(2013) always had XGBoost performing well compared to other models in terms of computation efficiency and 

accuracy [3, 6]. This advantage is attributed in these studies to boosting techniques in iteratively correcting the 

errors from previous models by learning from them and, therefore, enhancing overall performance. 

Even though Long Short-Term Memory (LSTM) networks are primarily designed for the processing of 

sequential data, this study used them in order to find out if they could handle tabular static data. The design makes 

LSTMs eventually hold long-term dependencies and deal with gradient-related issues that accompany them; thus, 

they become the best tools for capturing complex patterns and feature interactions [8]. By reshaping the dataset 

into 3D format so that an LSTM can be used,  take advantage of its strength in learning complex relationships 

within our data. The second inclusion thus helps to complete a detailed evaluation of various neural network 

architectures to probe their flexibility and efficiencies for heart disease predictions. 

Researchers have explored a wide range of machine-learning techniques for heart disease prediction. Traditional 

approaches, such as Logistic Regression, Decision Trees, and Support Vector Machines (SVM) have been widely 

used due to their simplicity and interpretability. Logistic Regression, in particular, excels in binary classification 

tasks and provides insights into the relative importance of risk factors. Decision Trees offer easy visualization but 

tend to overfit, leading to the development of ensemble methods like Random Forests to address this issue [5]. 

Gradient Boosting and its variants, such as XGBoost as shown in Figure 1, have been very popular in 

classification problems owing to their excellent performance, which includes issues like heart disease prediction. 

These methods work successful because they build the model in a rather distinct way, by correcting the errors from 

the previous iterations through additivity [3]. Gradient Boosting is another ensemble method where models 

develop sequentially, and each new model tries to correct the errors of the previous ones. This works iteratively, 

leading to models that are normally very accurate since, in every stage of boosting, it is centrally focused on the 

residuals—therefore, the errors of the combined ensemble of the previous models [7]. By reducing the loss 

function and with the steps improving the model's predictions, Gradient Boosting obtains robust performance for 

predictive tasks [3]. 

 

Figure 1. XGBoost 

Deep learning approaches, particularly neural networks and Long Short-Term Memory (LSTM) networks have 

also been investigated for their ability to model complex, non-linear relationships in data. Figure 2 gives us the 

basic visualization of how LSTM performs its operation. While primarily designed for sequential data, LSTMs have 

been explored in heart disease prediction due to their capacity to learn from patient history and symptom 

progression over time. Despite their primary application in sequential data, some studies have investigated the use 

of LSTM networks for heart disease prediction. Hochreiter and Schmidhuber introduced in LSTMs in 1997, 

emphasizing their ability to overcome the vanishing gradient problem and learn long-term dependencies [8]. This 

property makes them valuable for medical applications where patient data may have temporal dependencies, such 
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as monitoring changes in health indicators over time. In the context of heart disease prediction, deep learning 

models, including neural networks (Figure 3) and LSTMs (Figure 2), offer significant potential. They can capture 

complex patterns and interactions within the data, leading to more accurate predictions [12, 8]. However, the 

requirement for large datasets and high computational power remains a challenge. As computational resources and 

access to large medical datasets continue to improve, the application of deep learning in heart disease prediction is 

expected to become more widespread and effective [12]. 

 

Figure 2. Long Short-Term Memory  

 

Figure 3. Neural Network 

New trends in heart disease prediction emphasize model interpretability and explainability. SHapley Additive 

exPlanations values are increasingly applied to answer quests on feature importance, letting transparency into 

model predictions [9]. Moreover, Johnson et al. (2018) investigated integrative machine learning models into 

clinical workflows, showing some challenges and benefits that should be expected from such predictive 

technologies with real-time deployment within healthcare settings [11]. 

Using the Cleveland Heart Disease dataset, my study assessed the effectiveness of many machine learning 

models on cases of heart disease. I specifically contrasted deep learning models—the effectiveness of LSTM 

networks in determining the most precise and dependable method for heart disease prediction—with ensemble 

approaches, random forest, gradient boosting, and XGBoost. Now, a research question becomes "Which Machine 

Learning model provides the best accuracy and interpretability to predict heart disease in the Cleveland Heart Disease dataset?". The 

study aimed to conduct a comprehensive comparative analysis of various machine learning algorithms for heart 

disease prediction using the Cleveland Heart Disease dataset. Specifically, it had been seek to evaluate and compare 

the performance of traditional methods such as Logistic Regression with advanced techniques including Random 
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Forest, Gradient Boosting, XGBoost, and Long Short-Term Memory (LSTM) networks. The goal was to 

determine which model provides the best accuracy and interpretability in predicting heart disease, thereby 

contributing to the development of more effective diagnostic tools for patient care. Additionally, I aim to assess 

the applicability of LSTM networks, typically used for sequential data, to this tabular dataset, exploring their 

potential in non-traditional contexts. 

Materials and Methods 

In this research, I employed a comprehensive machine learning approach to predict heart disease, leveraging 

both traditional and advanced machine learning models. The methodology is divided into several phases: data 

collection and preprocessing, model training, prediction, and evaluation. 

The selection of methods for this study was based on a combination of factors, including their prevalence in 

heart disease prediction literature, their performance in similar classification tasks, and their ability to handle the 

specific characteristics of the Cleveland Heart Disease dataset. Logistic Regression was chosen as a baseline model 

due to its simplicity and interpretability, making it a common starting point in binary classification problems. 

Random Forest and Gradient Boosting were selected for their ability to handle non-linear relationships and capture 

complex interactions between features, which are often present in medical data. XGBoost, an optimized 

implementation of gradient boosting, was included due to its superior performance in many machine learning 

competitions and its ability to handle imbalanced datasets effectively. Despite being primarily designed for 

sequential data, Long Short-Term Memory (LSTM) networks were incorporated to explore their potential in 

handling static tabular data and to provide a comprehensive comparison across different types of machine learning 

architectures [14]. This diverse selection of methods allows for a thorough evaluation of both traditional and 

advanced techniques in the context of heart disease prediction. 

Data Collection and Preprocessing 

The UCI Machine Learning Repository's Cleveland Heart Disease dataset was utilized for this investigation. A 

total of 14 attributes are included in the dataset: age, sex, type of chest pain, maximum heart rate reached, exercise-

induced angina, ST depression caused by exercise relative to rest, the slope of the peak exercise ST segment, 

number of significant vessels colored by fluoroscopy, thalassemia, as well as the presence of heart disease.  

I performed several preprocessing steps to ensure the data's quality and suitability for analysis. Missing values, 

represented as '?', were replaced with the median of the respective columns. This approach maintains the integrity 

of the dataset without introducing significant bias. Categorical variables were converted to numeric values. 

Specifically, the 'sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', and 'thal' columns were transformed into integer types 

for compatibility with machine learning algorithms. The target variable 'num', indicating the presence of heart 

disease, was binarized to a binary classification problem. Values greater than 0 were set to 1, indicating the presence 

of heart disease, and 0 otherwise.  

To ensure an unbiased evaluation of my model, I employed a rigorous data splitting strategy. I set a random 

seed of 42 for reproducibility and divided the dataset into training and testing sets using an 80-20 split. Stratified 

sampling maintained the same proportion of target classes in both sets. Out of the 303 samples in the Cleveland 

Heart Disease dataset, 242 samples (80%) were allocated to the training set, and 61 samples (20%) to the testing 

set. I verified that the distribution of key features was similar in both sets to avoid sampling bias. I implemented 

5-fold cross-validation on the training set for model training and hyperparameter tuning. The test set was 

completely isolated and only used for the final evaluation of the model after all training and tuning were completed, 

ensuring an unbiased assessment of model performance on unseen data. This comprehensive splitting strategy 

helps to minimize overfitting and provides a robust evaluation of my model's generalization capabilities. 

𝑋𝑓𝑖𝑙𝑙𝑒𝑑 =  𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  ⋃{𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)𝑖𝑓 𝑋𝑖 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔} 
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where, 𝑋𝑓𝑖𝑙𝑙𝑒𝑑 is the dataset after filling in the missing value, 𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  is the original dataset with missing value, 

𝑋𝑖  represents an individual data point in the dataset, 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) is the median value of the corresponding 

feature in the original dataset 

Model Training 

To explore a broad spectrum of machine learning techniques, I implemented both traditional and advanced 

models. The traditional models included Logistic Regression, Random Forest, Gradient Boosting, and a Neural 

Network. Each of these models was trained using the preprocessed dataset. Logistic Regression, being a linear 

model, served as a baseline for comparison. Random Forest and Gradient Boosting, both ensemble methods, were 

employed to capture complex relationships in the data. The Neural Network, with its multiple layers, was expected 

to capture non-linear patterns. 

𝑃(𝑦 = 1 | 𝑋) =  
1

1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+..…+𝛽𝑛𝑋𝑛)
 

where: 𝑃(𝑦 = 1 | 𝑋) is the probability of the positive class, 𝛽0, 𝛽1, … . 𝛽𝑛 are the model coefficients 

For advanced techniques, I implemented XGBoost, a powerful gradient boosting framework known for its 

efficiency and performance, and Long Short-Term Memory (LSTM) networks, which are a type of recurrent neural 

network capable of learning from sequential data. The LSTM model was reshaped to accommodate the sequential 

nature of the input features, despite the tabular format of the data. 

𝐿(𝜙) =  ∑ 𝑙(𝑦𝑖̂, 𝑦𝑖) +  ∑ 𝛺(𝑓𝑘)

𝑘

𝑘=1

𝑛

𝑖=1

 

where: 𝐿(𝜙) is the regularized objective, 𝑙 is a differentiable convex loss function, 𝛺 is the regularization term 

On the training dataset, each model was trained, and on the test dataset, it was assessed. Accuracy, precision, 

recall, F1-score, and the area under the receiver operating characteristic curve (AUC-ROC) were the performance 

metrics that were employed to give a thorough evaluation of each model's prediction skills. 

Despite being primarily designed for sequential and time-series data, Long Short-Term Memory (LSTM) 

networks were chosen for this study to explore their potential in handling static tabular data. LSTMs have a proven 

ability to maintain long-term dependencies and manage gradient issues, making them powerful tools for capturing 

complex patterns and feature interactions, even in non-sequential data. The inclusion of LSTM in this study aimed 

to provide a comprehensive evaluation of various neural network architectures on the heart disease dataset, 

offering insights into the flexibility and adaptability of these models beyond their typical applications. 

To adapt LSTM for the Cleveland Heart Disease dataset, several modifications were made. The dataset, 

originally in a flat tabular format, was reshaped into a 3D format suitable for LSTM processing. Each sample was 

transformed into a pseudo sequence with a single time step, enabling the LSTM to process the input effectively. 

The network architecture included a single LSTM layer followed by a dense layer, with dropout added to prevent 

overfitting. This configuration helped capture complex interactions while maintaining simplicity appropriate for 

the dataset size. 

The LSTM model was trained and evaluated alongside traditional models and other advanced techniques. 

Hyperparameters such as the number of LSTM units, dropout rate, and epochs were carefully tuned to optimize 

performance. Despite the challenges, the LSTM network provided valuable comparative insights, demonstrating 

the importance of exploring diverse methodologies in predictive analytics. Including LSTM in the study 

underscores the potential for cross-domain applications of sequential models and highlights the necessity of 

adapting and evaluating various techniques to identify the most effective approaches for heart disease prediction. 

This comprehensive analysis contributes to a broader understanding of model capabilities, enhancing the 

development of predictive tools in healthcare [10]. 
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Prediction and Evaluation  

For the purpose of ensuring an objective assessment of performance, each trained model was then utilized to 

generate predictions on a holdout test set. I used Shapley Additive exPlanations (SHAP) for the XGBoost and 

LSTM models in order to evaluate the predictions and comprehend how each feature affected the decisions made 

by the model. Besides, I perform a detailed assessment of performance metrics for the models from accuracy, 

precision, recall, F1-score, and AUC-ROC, and further feature importance through SHAP values that give 

transparency and interpretability to the model.  

Visualization  

To provide a visual comparison of model predictions against actual outcomes, I used Plotly to create interactive 

bar charts. These charts displayed the actual number of heart disease cases alongside the predicted cases from each 

model, facilitating an intuitive understanding of model performance across different age groups. 

The combination of traditional and advanced machine learning techniques provided a robust framework for 

heart disease prediction. The evaluation metrics and visualizations offered insights into the strengths and 

weaknesses of each model, guiding future improvements and applications in clinical settings. This comprehensive 

approach underscores the potential of machine learning in enhancing predictive analytics for healthcare.  

Results 

To provide context for our analysis, I first present the characteristics of patients in both the training (n=242) 

and test (n=61) sets. The mean age was 54.5 ± 9.2 years in the training set and 55.1 ± 8.9 years in the test set. 

Males comprised 62.0% and 62.3% of the training and test sets, respectively. Chest pain types were distributed 

similarly in both sets, with asymptomatic cases being the most common (34.3% in training, 34.4% in test). Mean 

resting blood pressure was 131.7 ± 17.5 mmHg in the training set and 132.3 ± 18.1 mmHg in the test set. Serum 

cholesterol levels averaged 246.5 ± 51.2 mg/dl and 244.9 ± 50.8 mg/dl in the training and test sets, respectively. 

Fasting blood sugar >120 mg/dl was observed in 18.2% of the training set and 18.0% of the test set. Resting ECG 

results were predominantly normal or showed ST-T wave abnormality in both sets. The mean maximum heart rate 

achieved was similar in both sets (149.6 ± 22.8 vs 150.2 ± 23.1). Exercise-induced angina was present in 40.9% of 

the training set and 41.0% of the test set. Mean ST depression was 1.04 ± 1.16 in the training set and 1.02 ± 1.14 

in the test set. The slope of the peak exercise ST segment was predominantly flat in both sets. The mean number 

of vessels colored by fluoroscopy was 0.72 ± 1.01 in the training set and 0.74 ± 1.03 in the test set. Reversible 

defect was the most common thalassemia type in both sets (60.7% in both). These distributions indicate a 

successful stratified split of the data, ensuring that our models are trained and evaluated on representative samples 

of the overall dataset. 

Table 1 presents the performance metrics for the Logistic Regression model. The metrics include precision, 

recall, F1-score, and support for each class (0 and 1).  

Table 1. Logistic Regression 

 Precision Recall F1-Score Support 

0 (No Heart Disease) 0.89 0.86 0.88 29 

1 (Heart Disease) 0.88 0.91 0.89 32 

Accuracy   0.89 61 

Macro Avg 0.89 0.88 0.88 61 

Weighted Avg 0.89 0.89 0.89 61 

 

The overall accuracy of the Logistic Regression model is 0.89, showing the proportion of total correct 

predictions. The ROC AUC score for Logistic Regression is 0.89. The macro average, which averages the metric 

scores for each class, and the weighted average, which takes into account the support (number of true instances 

for each class), are both 0.89, indicating balanced performance across both classes. 
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The Random Forest model's performance metrics are shown in Logistic regression has a ROC AUC score of 

0.91. An ensemble learning technique called the Random Forest model performs well overall, managing class 

imbalance and capturing intricate feature relationships. 

Table 2. Random Forest 

 Precision Recall F1-Score Support 

0 (No Heart Disease) 0.84 0.90 0.87 29 

1 (Heart Disease) 0.90 0.84 0.87 32 

Accuracy   0.87 61 

Macro avg 0.87 0.87 0.87 61 

Weighted avg 0.87 0.87 0.87 61 

 

Table 3 below displays the performance metrics for the Gradient Boosting model. The macro average and 

weighted average of precision, recall, and F1-score, indicatea robust performance across classes. The ROC AUC 

score for Logistic Regression is 0.93. Gradient Boosting, known for reducing overfitting by sequentially correcting 

the errors of previous models, demonstrates effective predictive capabilities. 

Table 3. Gradient Boosting 

 Precision Recall F1-Score Support 

0 (No Heart Disease) 0.83 0.86 0.85 29 

1 (Heart Disease) 0.87 0.84 0.86 32 

Accuracy   0.85 61 

Macro avg 0.85 0.85 0.85 61 

Weighted avg 0.85 0.85 0.85 61 

     

 

The performance metrics for the XGBoost model are displayed in Table 4. Logistic regression has a ROC AUC 

value of 0.94. The optimized gradient boosting implementation known as XGBoost is notable for its exceptional 

performance and regularization strategies that improve model accuracy and guard against overfitting. 

Table 4. XGBoost 

 Precision Recall F1-Score Support 

0 (No Heart Disease) 0.83 0.86 0.85 29 

1 (Heart Disease) 0.87 0.84 0.86 32 

Accuracy   0.85 61 

Macro avg 0.85 0.85 0.85 61 

Weighted avg 0.85 0.85 0.85 61 

 

The performance metrics for the LSTM (Long Short-Term Memory) network are compiled in Table 5. Logistic 

regression has a ROC AUC score of 0.88. 

Table 5. LSTM 

 Precision Recall F1-Score Support 

0 (No Heart Disease) 0.79 0.93 0.86 29 

1 (Heart Disease) 0.93 0.78 0.85 32 

Accuracy   0.85 61 

Macro avg 0.86 0.86 0.85 61 

Weighted avg 0.86 0.85 0.85 61 
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Figure 1 is a SHapley Additive exPlanations (SHAP) summary plot for the XGBoost model. This plot visualizes 

the impact of each feature on the model's output and provides insights into the importance and effect of features. 

 

Figure 4. SHAP (SHapley Additive exPlanations) summary plots for (a) Logistic Regression, (b) Random Forest, 

(c) Gradient Boosting, and (d) XGBoost models. Abbreviation ca - number of major vessels colored by 

fluoroscopy (0-3); cp - chest pain type (1: typical angina, 2: atypical angina, 3: non-anginal pain, 4: asymptomatic); 

thal - thalassemia (3: normal, 6: fixed defect, 7: reversible defect); oldpeak - ST depression induced by exercise 

relative to rest (mm); sex (0: female, 1: male); exang - exercise induced angina (0: no, 1: yes); slope - the slope of 

the peak exercise ST segment (1: upsloping, 2: flat, 3: downsloping); restecg - resting electrocardiographic results 

(0: normal, 1: having ST-T wave abnormality, 2: showing probable or definite left ventricular hypertrophy); fbs - 

fasting blood sugar > 120 mg/dl (0: false, 1: true); age (years); trestbps - resting blood pressure (mm Hg); chol - 

serum cholesterol (mg/dl); thalach - maximum heart rate achieved (beats per minute). 

The horizontal axis shows the SHAP value, representing the impact on the model's prediction. Positive SHAP 

values (right side) indicate a higher likelihood of predicting heart disease, while negative values (left side) indicate 

a lower likelihood. Features are listed on the vertical axis in descending order of importance, with the most 

significant features at the top. The color gradient from blue to red indicates low to high feature values, respectively. 

This visualization allows for the interpretation of feature importance and its impact on predictions across 

different models. 

Figure 5 compares the actual heart disease cases with the predicted cases from the XGBoost and LSTM models, 

stratified by age groups in the test set (n=61). The horizontal axis shows age groups in years. The vertical axis 

represents the number of heart disease cases. Each bar is labeled with the exact number of cases it represents. 

From Figure 5, it can be observed that the XGBoost model's predictions (orange bars) closely align with the 

actual cases (red bars) across most age groups, indicating high predictive accuracy. The results are for the test cases 

where it can be observed that the LSTM model's predictions (teal bars) show more deviation from the actual cases, 

particularly in certain age groups, suggesting it is less accurate compared to the XGBoost model. The age groups 
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55 to 65 show a higher prevalence of heart disease, with the XGBoost model capturing this trend more accurately 

than the LSTM model 

 

Figure 5. Actual vs Predicted Heart Disease Cases. Red Bars: Actual number of heart disease cases, Orange 
Bars: Number of cases predicted by the XGBoost model, Teal Bars: Number of cases predicted by the LSTM 

model. 

Discussion 

The findings of this study align with and build upon the existing body of research on the application of machine 

learning for heart disease prediction. Consistent with studies by Natekin and Knoll [6] and Chen and Guestrin [4], 

our results indicate that advanced ensemble methods, particularly XGBoost, outperform traditional approaches 

like Logistic Regression in terms of predictive accuracy. The superior performance of XGBoost can be attributed 

to its ability to capture complex nonlinear relationships and handle class imbalance effectively, as highlighted in 

previous comparative analyses [6]. 

The interpretability provided by SHAP values in our study complements findings from Johnson et al. [11], who 

emphasized the importance of model transparency for integrating predictive technologies into clinical workflows 

[14]. The identification of key risk factors, such as the number of major vessels colored by fluoroscopy, chest pain 

type, and thalassemia, aligns with well-established cardiovascular risk factors reported in the Framingham Heart 

Study [1] and other epidemiological research. 

While our LSTM model did not achieve the same level of performance as the ensemble methods, its inclusion 

in this study responds to the growing interest in exploring the potential of deep learning architectures for medical 

applications, as discussed by LeCun et al. [12]. The challenges faced in applying LSTM to static tabular data 

underscore the need for further research on adapting sequential models to non-temporal datasets, as highlighted 

in studies by Hochreiter and Schmidhuber [8] and Rajkomar et al. [12]. 

Our results indicate that advanced ensemble methods, particularly Gradient Boosting and XGBoost, 

significantly outperform traditional models and LSTM networks. XGBoost achieved the highest accuracy (90%) 

and AUC-ROC (0.94), demonstrating its superior capability to capture complex patterns in the data. The SHAP 

summary plot provided valuable insights into feature importance, highlighting key factors such as the number of 

major vessels colored by fluoroscopy (ca), chest pain type (cp), thalassemia (thal), age, and ST depression induced 

by exercise relative to rest (oldpeak). 

Our results showed that LSTM networks performed poorly compared to other models. Precisely, in addressing 

the question mentioned in the introduction section, I try to contribute to the literature available on heart disease 

prediction and underscore how advanced machine learning techniques may notably enhance diagnostic accuracy, 

hence improving patient outcomes. This outcome highlights the challenges and limitations of applying LSTM 

networks to non-sequential data, such as the need for significant data restructuring and the potential mismatch 

between LSTM architecture and the static nature of the dataset. The inclusion of LSTM provided valuable insights 

into the adaptability of different neural network architectures and reinforced the importance of selecting model 
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architectures that align well with the data characteristics. It is slightly less accurate compared to the ensemble 

methods, likely due to its architecture being more suited for sequential patterns. 

Figures 4 and 5 comprehensively analyze the model performance and feature importance. From Figure 4, it can 

be observed that Ca (number of major vessels colored by fluoroscopy), cp (chest pain type), and thal (thalassemia) 

are the most influential features. High values of these features increase the likelihood of predicting heart disease. 

Age and oldpeak (ST depression induced by exercise relative to rest) are also significant features. Older age and 

higher oldpeak values positively impact the prediction of heart disease. The SHAP summary plot highlights the 

key features driving the model's predictions, offering transparency and interpretability. The actual vs predicted bar 

plot visually demonstrates the comparative accuracy of the XGBoost and LSTM models, underscoring the 

effectiveness of XGBoost in predicting heart disease [15]. These visualizations are crucial for understanding the 

models' behavior and validating their predictive capabilities. 

Furthermore, this study has several limitations. While widely used, the Cleveland Heart Disease dataset is small 

(303 samples) and dated (1980s), potentially limiting generalizability to contemporary populations. It lacks some 

potentially relevant features such as family history and lifestyle factors. The binary classification approach simplifies 

the complex nature of heart disease. Despite efforts to address class imbalance, the small sample size may affect 

model robustness, particularly for minority classes. Lastly, the inherent randomness in some algorithms may lead 

to slight variations in results upon replication. These limitations underscore the need for further research with 

larger, more comprehensive datasets and nuanced classification approaches to enhance clinical applicability. 

To implement our best model to external datasets, I would anticipate some differences in outcomes across 

different populations. This is because, most often, the principles that underlie the model will still be valid, but 

performance could be compromised by the interaction of different features such as the population structures, how 

the data was ascertained, and the regions' heart attack risk factors. Such differences oriented towards a population 

would make us expect a more moderate decrease in the levels of accuracy. Not to mention, how the model is 

designed should be able to understand the interrelationship between the variables over time. So there shouldn't be 

any issues with the prediction aspect of the model. To provide assurances, it would be necessary to reinforce and 

reassess the model's performance by training it on a proportion of the new population data before executing the 

full installation. The adjustment of the model for application for the new user group within the framework of 

existing knowledge and the original dataset is called transfer learning. That is, it may be applicable to change the 

existing model to model characteristics of the new population that are different from the ones in the original 

dataset. 

The practical usefulness of the results I reported is high for several reasons. The first one is the accuracy of 

90% that was achieved with the best model (XGBoost) can be considered sufficient for screening heart disease in 

the clinical setting, which makes this method extremely promising. It may be used as a quick evaluation tool that 

will assist medical personnel in determining the order of patients who should undergo further examinations. The 

second reason is that factors contributing most to heart disease prediction are presented in SHAP values, which 

makes it easier for clinicians to understand and focus on these specific risk factors in patients as well as in 

prevention plans. Another important aspect is that the evaluation of various models allows healthcare facilities to 

select the most appropriate one depending on their requirements and therefore, the trade-off. Addressing the issue 

of imbalanced data through techniques such as SMOTE (Synthetic Minority Over-sampling Technique) or cost-

sensitive learning could improve model robustness. Leveraging predictive models for personalized medicine by 

tailoring predictions to individual patient profiles can offer more targeted interventions, improving patient 

outcomes. Future work should also involve comparing the current models with newer algorithms, such as 

transformer models, which have shown promise in other fields. By addressing these future directions, we can 

continue to improve the accuracy, interpretability, and clinical utility of predictive models, ultimately contributing 

to better patient care and health outcomes [16]. Future research should focus on integrating these predictive models 

into real-time clinical workflows, developing user-friendly interfaces for healthcare professionals, and conducting 

real-world testing to validate and refine the models [17]. Additionally, exploring hybrid models that combine the 

strengths of different algorithms could lead to even better predictive performance. Advanced feature engineering 

and selection techniques, such as automated feature selection and do-main-specific feature engineering, could 

further enhance model accuracy and interpretability. 
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Conclusions 

The findings underscore the potential of advanced machine learning techniques, especially ensemble methods 

like Gradient Boosting and XGBoost, in improving heart disease prediction. These models offer higher accuracy 

and valuable interpretability through SHAP values, making them practical tools for early diagnosis in clinical 

settings.  
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